【題目】已知橢圓E:
經(jīng)過點P(2,1),且離心率為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點,在橢圓短軸上有兩點M,N滿足
,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點,如果經(jīng)過定點請求出定點的坐標(biāo),如果不經(jīng)過定點,請說明理由.
【答案】(1)
;(2)直線AB過定點Q(0,﹣2).
【解析】試題分析:(1)根據(jù)橢圓的幾何性質(zhì)得到橢圓方程;(2)先由特殊情況得到結(jié)果,再考慮一般情況,聯(lián)立直線和橢圓得到二次函數(shù),根據(jù)韋達(dá)定理,和向量坐標(biāo)化的方法,得到結(jié)果。
(Ⅰ)由橢圓的離心率e=
,則a2=4b2, 將P(2,1)代入橢圓
,則
,解得:b2=2,則a2=8, ∴橢圓的方程為:
;
(Ⅱ)當(dāng)M,N分別是短軸的端點時,顯然直線AB為y軸,所以若直線過定點,這個定點一點在y軸上,
當(dāng)M,N不是短軸的端點時,設(shè)直線AB的方程為y=kx+t,設(shè)A(x1,y1)、B(x2,y2),
由
消去y得(1+4k2)x2+8ktx+4t2﹣8=0,·則△=16(8k2﹣t2+2)>0,
x1+x2=
,x1x2=
,
又直線PA的方程為y﹣1=
(x﹣2),即y﹣1=
(x﹣2),
因此M點坐標(biāo)為(0,
),同理可知:N(0,
),
由
,則
+
=0,
化簡整理得:(2﹣4k)x1x2﹣(2﹣4k+2t)(x1+x2)+8t=0,
則(2﹣4k)×
﹣(2﹣4k+2t)(
)+8t=0,
當(dāng)且僅當(dāng)t=﹣2時,對任意的k都成立,直線AB過定點Q(0,﹣2).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)a為何值時,x軸為曲線
的切線;
(2)設(shè)函數(shù)
,討論
在區(qū)間(0,1)上零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
已知曲線C
:
(t為參數(shù)), C
:
(
為參數(shù))。
(1)化C
,C
的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C
上的點P對應(yīng)的參數(shù)為
,Q為C
上的動點,求
中點
到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線
的方程為
,以極點為原點,極軸所在直線為
軸建立直角坐標(biāo),直線
的參數(shù)方程為
(
為參數(shù)),
與
交于
,
兩點.
(1)寫出曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)設(shè)點
;若
、
、
成等比數(shù)列,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護(hù)越來越重視,企業(yè)的環(huán)保意識也越來越強(qiáng).現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費(fèi)用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標(biāo),則立即同時啟動另外2套系統(tǒng)進(jìn)行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標(biāo)的概率均為
,且各個時間段每套系統(tǒng)監(jiān)測出排放超標(biāo)情況相互獨(dú)立.
(1)當(dāng)
時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;
(2)若每套環(huán)境監(jiān)測系統(tǒng)運(yùn)行成本為300元/小時(不啟動則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費(fèi)用是否會超過預(yù)算(全年按9000小時計算)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為
(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+
).
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于M,N兩點,求△MON的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx
a,f′(x)是f(x)的導(dǎo)函數(shù),若關(guān)于x的方程f′(x)
0有兩個不等的根,則實數(shù)a的取值范圍是_____
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com