【題目】已知函數(shù)
(其中
).
(1)當(dāng)
時(shí),求函數(shù)
的圖像在
處的切線方程;
(2)若
恒成立,求
的取值范圍;
(3)設(shè)
,且函數(shù)
有極大值點(diǎn)
,求證:
.
【答案】(1)
;(2)
;(3)見解析。
【解析】試題分析:
(1)根據(jù)導(dǎo)數(shù)的幾何意義可得所求的切線方程.(2)由題意分離參數(shù)可得
在
上恒成立,設(shè)
,利用導(dǎo)數(shù)可求得
,故
,解得
,即為所求范圍.(3)將
求導(dǎo)后由
及根與系數(shù)的關(guān)系可得極大值點(diǎn)
,然后得到
,
.設(shè)
,求導(dǎo)可得
在
上單調(diào)遞減,故
,即不等式成立.
試題解析:
(1)當(dāng)
時(shí),
,
,
∴
,
∴
,
又
,
∴所求的切線方程為
,
即![]()
(2)有題意得
在
上恒成立,
∴
在
上恒成立,
∵
,
∴
在
上恒成立,
令
,則![]()
∴當(dāng)
時(shí),
,
單調(diào)遞增;
當(dāng)
時(shí),
,
單調(diào)遞減.
∴當(dāng)
時(shí),
取得極大值,也為最大值,且
,
∴
,解得
,
∴實(shí)數(shù)
的取值范圍是
.
(3)證明:由題意得
,
,
∴
,
①當(dāng)
時(shí),
,
單調(diào)遞增,無極值點(diǎn).不符合題意;
②當(dāng)
或
時(shí),設(shè)
的兩根為
和
,
∵
為函數(shù)
的極大值點(diǎn),
∴
,
由
,
,知
,
,
又由
,得
,
∵
,
,
令
,
則
,
令
,
,
則
,
∴當(dāng)
時(shí),
,
單調(diào)遞增;
當(dāng)
時(shí),
,
單調(diào)遞減.
∴
,
∴![]()
∴
在
上單調(diào)遞減,
∴
,
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4男3女站成一排,求滿足下列條件的排法共有多少種?
任何兩名女生都不相鄰,有多少種排法?
男甲不在首位,男乙不在末位,有多少種排法?
男生甲、乙、丙順序一定,有多少種排法?
男甲在男乙的左邊
不一定相鄰
有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
中,
,
,
,
是
中點(diǎn)(如圖1).將
沿
折起到圖2中
的位置,得到四棱錐
.
![]()
![]()
(1)將
沿
折起的過程中,
平面
是否成立?并證明你的結(jié)論;
(2)若
與平面
所成的角為60°,且
為銳角三角形,求平面
和平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn)
,且在y軸上截得的弦MN的長(zhǎng)為4.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)過點(diǎn)
的直線
與曲線C交于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)E(
,0),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn.
(1)求an及Sn;
(2)令bn=
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有
六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場(chǎng)比賽),第一周的比賽中
,各踢了
場(chǎng),
各踢了
場(chǎng),
踢了
場(chǎng),且
隊(duì)與
隊(duì)未踢過,
隊(duì)與
隊(duì)也未踢過,則在第一周的比賽中,
隊(duì)踢的比賽的場(chǎng)數(shù)是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年“雙節(jié)”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁?/span>
分成六段:
,
,
,
,
,
后得到如圖的頻率分布直方圖.
![]()
(I)某調(diào)查公司在采樣中,用到的是什么抽樣方法?
(II)求這40輛小型車輛車速的眾數(shù)、中位數(shù)及平均數(shù)的估計(jì)值;
(III)若從車速在
的車輛中任抽取2輛,求車速在
的車輛至少有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高中年級(jí)開設(shè)了豐富多彩的校本課程,甲、乙兩班各隨機(jī)抽取了5名學(xué)生的學(xué)分,用莖葉圖表示.
,
分別表示甲、乙兩班各自5名學(xué)生學(xué)分的標(biāo)準(zhǔn)差,則
_______
.(填“
”“<”或“=”)
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)監(jiān)部門從某超市銷售的甲、乙兩種食用油中分別各隨機(jī)抽取100桶檢測(cè)某項(xiàng)質(zhì)量指標(biāo),由檢測(cè)結(jié)果得到如下的頻率分布直方圖:
![]()
(Ⅰ)寫出頻率分布直方圖(甲)中
的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為
,
,試比較
,
的大小(只要求寫出答案);
(Ⅱ)估計(jì)在甲、乙兩種食用油中隨機(jī)抽取1捅,恰有一桶的質(zhì)量指標(biāo)大于20;
(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值
服從正態(tài)分布
.其中
近似為樣本平均數(shù)
,
近似為樣本方差
,設(shè)
表示從乙種食用油中隨機(jī)抽取10桶,其質(zhì)量指標(biāo)值位于(14.55,38.45)的桶數(shù),求
的數(shù)學(xué)期望.
注:①同一組數(shù)據(jù)用該區(qū)問的中點(diǎn)值作代表,計(jì)算得![]()
②若![]()
,則
,
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com