【題目】選修4—5:不等式選講
已知函數(shù)
.
(1)當(dāng)
時,解不等式
;
(2)若存在實(shí)數(shù)
,使得不等式
成立,求實(shí)
的取值范圍.
【答案】(1)
(2)![]()
【解析】試題分析:(1)根據(jù)絕對值定義,將原不等式等價轉(zhuǎn)化為三個不等式組,求它們的并集得原不等式的解集(2)不等式有解問題往往轉(zhuǎn)化為對應(yīng)函數(shù)最值問題:
,由絕對值三角不等式得||x﹣3|﹣|x﹣a||≤|(x﹣3)﹣(x﹣a)|=|a﹣3|,即轉(zhuǎn)化為解不等式:
,再利用絕對值定義求解得解集
試題解析:(1)當(dāng)a=2時,f(x)=|x﹣3|﹣|x﹣2|,
當(dāng)x≥3時,
,即為
,即
成立,則有x≥3;
當(dāng)x≤2時,
即為
,即
,解得x∈;
當(dāng)2<x<3時,
即為
,解得,
,則有
.
則原不等式的解集為
即為
;
(2)由絕對值不等式的性質(zhì)可得||x﹣3|﹣|x﹣a||≤|(x﹣3)﹣(x﹣a)|=|a﹣3|,
即有
的最大值為|a﹣3|.
若存在實(shí)數(shù)x,使得不等式
成立,則有![]()
即
或
,即有
∈或
≤
.所以
的取值范圍是![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:mx﹣y=1,若直線l與直線x+m(m﹣1)y=2垂直,則m的值為_____,動直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
的右焦點(diǎn)為
,
為圓
與橢圓
的一個公共點(diǎn),
.
![]()
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,過
作直線
與橢圓
交于
,
兩點(diǎn),點(diǎn)
為點(diǎn)
關(guān)于
軸的對稱點(diǎn).
(1)求證:
;
(2)試問過
,
的直線是否過定點(diǎn)?若是,請求出該定點(diǎn);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
在點(diǎn)
處的切線方程;
(2)求函數(shù)
的單調(diào)區(qū)間;
(3) 求證:當(dāng)
時,
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入
萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從
開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入
萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示,
與
之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出
關(guān)于
的回歸直線方程.
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,則下列命題中正確的個數(shù)是( )
①當(dāng)
時,函數(shù)
在
上有最小值;②當(dāng)
時,函數(shù)
在
是單調(diào)增函數(shù);③若
,則
;④方程
可能有三個實(shí)數(shù)根.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體ABCD,則在四面體ABCD中,下列結(jié)論正確的是( )
![]()
A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC
C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,
底面
,
,
,
,
為線段
上一點(diǎn),
,
為
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)求二面角
的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com