【題目】已知函數(shù)
.
(1)設(shè)
時(shí),求
的導(dǎo)函數(shù)![]()
的遞增區(qū)間;
(2)設(shè)
,求
的單調(diào)區(qū)間;
(3)若
對(duì)
恒成立,求
的取值范圍.
【答案】(1)
;
(2)當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
,無單調(diào)遞增區(qū)間,
當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
;
(3)![]()
【解析】
(1)將
代入函數(shù),求出
,即
,再求出
,進(jìn)而求出
的單調(diào)遞增區(qū)間;
(2)對(duì)
求導(dǎo),討論
的取值范圍,求出
的單調(diào)區(qū)間;
(3)分離參數(shù),不等式
對(duì)
恒成立轉(zhuǎn)化為
恒成立,構(gòu)造新的函數(shù)
,求出
的最大值,從而求得
的取值范圍.
解:(1)![]()
時(shí),
,
,
令
,
則
,
令
,得
,
的單調(diào)遞增區(qū)間為
;
(2)
,
若
,則
恒成立,
在
單調(diào)遞減;
若
,令
,得
,
單調(diào)遞增,
令
,得
,
單調(diào)遞減.
綜上所述,
當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
,無單調(diào)遞增區(qū)間;
當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
;
(3)
對(duì)
恒成立可轉(zhuǎn)化為
恒成立,
設(shè)
,
,
則當(dāng)
時(shí),
,
單調(diào)遞增,
當(dāng)
時(shí),
,
單調(diào)遞減,
,
,即
的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓
:
.
![]()
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知
,圓
與x軸相交于兩點(diǎn)
(點(diǎn)
在點(diǎn)
的左側(cè)).過點(diǎn)
任作一條直線與圓
:
相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得
=
?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
存在極大值,且極大值為1,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知8件不同的產(chǎn)品中有3件次品,現(xiàn)對(duì)它們一一進(jìn)行測(cè)試,直至找到所有次品.
(1)若在第5次測(cè)試時(shí)找到最后一件次品,則共有多少種不同的測(cè)試方法?
(2)若至多測(cè)試5次就能找到所有次品,則共有多少種不同的測(cè)試方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列
的前n項(xiàng)和為
,已知
,
.
(1)求
的值;
(2)求數(shù)列
的通項(xiàng)公式;
(3)令
,
,證明:對(duì)任意
,均有
(要求不得使用數(shù)學(xué)歸終法).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,求證:
(1)
在區(qū)間
存在唯一極大值點(diǎn);
(2)
在
上有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為
,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.
(1)求一件手工藝品質(zhì)量為B級(jí)的概率;
(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷,且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷,利潤(rùn)記為100元.
①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;
②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前n項(xiàng)和
,
是等差數(shù)列,且
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
.求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在
中,內(nèi)角
對(duì)邊的邊長(zhǎng)分別是
,已知
,
.
(Ⅰ)若
的面積等于
,求
;
(Ⅱ)若
,求
的面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com