【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓
的左、右焦點(diǎn)分別為F1,F2,離心率為
,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過點(diǎn)F1作直線PF1的垂線l1,過點(diǎn)F2作直線PF2的垂線l2.
![]()
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).
【答案】(1)
;(2)
.
【解析】
(1)由條件可得
,
,解方程組可得
,則
;(2)設(shè)
,根據(jù)點(diǎn)斜式寫出直線
及
的方程,解方程組得交點(diǎn)坐標(biāo)
,代入橢圓方程化簡(jiǎn)得
或
,與
聯(lián)立,求解可得點(diǎn)
的坐標(biāo).
(1)設(shè)橢圓的半焦距為c.
因?yàn)闄E圓E的離心率為
,兩準(zhǔn)線之間的距離為8,所以
,
,
解得
,于是
,
因此橢圓E的標(biāo)準(zhǔn)方程是
.
(2)由(1)知,
,
.
設(shè)
,因?yàn)辄c(diǎn)
為第一象限的點(diǎn),故
.
當(dāng)
時(shí),
與
相交于
,與題設(shè)不符.
當(dāng)
時(shí),直線
的斜率為
,直線
的斜率為
.
因?yàn)?/span>
,
,所以直線
的斜率為
,直線
的斜率為
,
從而直線
的方程:
, ①
直線
的方程:
. ②
由①②,解得
,所以
.
因?yàn)辄c(diǎn)
在橢圓上,由對(duì)稱性,得
,即
或
.
又
在橢圓E上,故
.
由
,解得
;
,無(wú)解.
因此點(diǎn)P的坐標(biāo)為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有10名選手參加某項(xiàng)詩(shī)詞比賽,計(jì)分規(guī)則如下:比賽共有6道題,對(duì)于每一道題,10名選手都必須作答,若恰有
個(gè)人答錯(cuò),則答對(duì)的選手該題每人得
分,答錯(cuò)選手該題不得分.比賽結(jié)束后,關(guān)于選手得分情況有如下結(jié)論:
①若選手甲答對(duì)6道題,選手乙答對(duì)5道題,則甲比乙至少多得1分:
②若選手甲和選手乙都答對(duì)5道題,則甲和乙得分相同;
③若選手甲的總分比其他選手都高,則甲最高可得54分
其中正確結(jié)論的個(gè)數(shù)是( )
A.0B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
為圓
的圓心,
是圓上的動(dòng)點(diǎn),點(diǎn)
在圓的半徑
上,且有點(diǎn)
和
上的點(diǎn)
,滿足
,
.
(1)當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程;
(2)若斜率為
的直線
與圓
相切,直線
與(1)中所求點(diǎn)
的軌跡交于不同的兩點(diǎn)
,
,
是坐標(biāo)原點(diǎn),且
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求
的單調(diào)性;
(2)若對(duì)定義域內(nèi)任意的
,
都恒成立,求a的取值范圍;
(3)記
,若
在區(qū)間
內(nèi)有2個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
,
,
,平面
底面
,
.
和
分別是
和
的中點(diǎn),求證:
![]()
(Ⅰ)
底面
;
(Ⅱ)
平面
;
(Ⅲ)平面
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量
(件)與單價(jià)
(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
![]()
(1)根據(jù)周銷售量圖寫出
(件)與單價(jià)
(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(rùn)
(元)與單價(jià)
(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐
中,
為等腰直角三角形,
,設(shè)點(diǎn)
為
中點(diǎn),點(diǎn)
為
中點(diǎn),點(diǎn)
為
上一點(diǎn),且
.
![]()
(1)證明:
平面
;
(2)若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1、2、3、4、5、6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為
,第二次出現(xiàn)的點(diǎn)數(shù)為
.
(1)設(shè)復(fù)數(shù)
(
為虛數(shù)單位),求事件“
為實(shí)數(shù)”的概率;
(2)求點(diǎn)
落在不等式組
表示的平面區(qū)域內(nèi)(含邊界)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
滿足
,且
.
(1)求
的解析式;
(2)設(shè)函數(shù)
,當(dāng)
時(shí),求
的最小值;
(3)設(shè)函數(shù)
,若對(duì)任意
,總存在
,使得
成立,求m的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com