(本題滿分12分)
已知函數(shù)
.
(1)判斷該函數(shù)在區(qū)間(2,+∞)上的單調(diào)性,并給出證明;
(2)求該函數(shù)在區(qū)間[3,6]上的最大值和最小值.
(1)在區(qū)間(2,+∞)是減函數(shù),證明:x1,x2是區(qū)間上的任意兩個實數(shù),且x1<x2,f(x1)-f(x2)=
-
=
由2< x1 <x2得f (x1)-f (x2)>0,所以函數(shù)
在區(qū)間(2,+∞)是減函數(shù)(2)最大值3,最小值![]()
解析試題分析:(1)函數(shù)
在區(qū)間(2,+∞)是減函數(shù) …………2分
證明:設(shè)x1,x2是區(qū)間上的任意兩個實數(shù),且x1<x2,則
f(x1)-f(x2)=
-
=
…………4分
由2< x1 <x2,得x2-x1>0,( x1-2) ( x2-2)>0
于是f (x1)-f (x2)>0,f (x1)>f (x2)
函數(shù)
在區(qū)間(2,+∞)是減函數(shù). …………8分
(2)由可知
在區(qū)間[3,6]的兩個端點(diǎn)上分別取得最大值和最小值,即當(dāng)x=3時取得最大值3,當(dāng)x=6時取得最小值
. …………12分
考點(diǎn):定義法判定函數(shù)的單調(diào)性,利用單調(diào)性求最值
點(diǎn)評:定義法判定單調(diào)性的步驟:1,所給區(qū)間取
,2,計算
,3,判定差值的正負(fù)號,4,得到函數(shù)單調(diào)性
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
是定義域為
的奇函數(shù),(1)求實數(shù)
的值;(2)證明
是
上的單調(diào)函數(shù);(3)若對于任意的
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時,討論
的單調(diào)性;
(Ⅱ)設(shè)
時,若對任意
,存在
,使
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)
,其中
.(1) 討論函數(shù)
的單調(diào)性,并求出
的極值;(2) 若對于任意
,都存在
,使得
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)
為實數(shù),且![]()
(1)求方程
的解;
(2)若
,
滿足
,試寫出
與
的等量關(guān)系(至少寫出兩個);
(3)在(2)的基礎(chǔ)上,證明在這一關(guān)系中存在
滿足
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
,其中
表示不超過
的最大整數(shù),如
.
(1)求
的值;
(2)若在區(qū)間
上存在x,使得
成立,求實數(shù)k的取值范圍;
(3)求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
,![]()
,記
。
(Ⅰ)判斷
的奇偶性,并證明;
(Ⅱ)對任意
,都存在
,使得
,
.若
,求實數(shù)
的值;
(Ⅲ)若
對于一切
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com