如圖,在直三棱柱
中,
,
。M、N分別是AC和BB1的中點(diǎn)。
(1)求二面角
的大小。
(2)證明:在AB上存在一個(gè)點(diǎn)Q,使得平面
⊥平面
,
并求出
的長(zhǎng)度。![]()
(1)
;(2)詳見(jiàn)解析
解析試題分析:(1)有兩種思路,其一是利用幾何體中的垂直關(guān)系,以B為坐標(biāo)原點(diǎn),
所在的直線分別為,
軸,
軸,
軸建立空間直角坐標(biāo)系,利用平面
與平面
的法向量的夾角求二面角的大小.其二是按照作出二面角的平面角,并在三角形中求出該角的方法,利用平面
平面
,在平面
內(nèi)過(guò)點(diǎn)
作
,垂足是
,過(guò)作
,垂足為
,連結(jié)
,得二面角
的平面角
,最后在直角三角形
中求
;
(2)在空間直角坐標(biāo)系中,設(shè)
,求出平面
的法向量
,和平面
的法向量![]()
再由
確定點(diǎn)
的坐標(biāo),進(jìn)而求線段
的長(zhǎng)度.
方法一(向量法):如圖建立空間直角坐標(biāo)系 1分![]()
(1)![]()
![]()
設(shè)平面
的法向量為
,平面
的法向量為![]()
則有
3分
5分
設(shè)二面角
為
,則 ![]()
∴二面角
的大小為60°。 6分
(2)設(shè)
, ∵![]()
∴
,設(shè)平面
的法向量為![]()
則有
10分
由(1)可知平面
的法向量為
,
平面
平面![]()
即
此時(shí)
,
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,已知
側(cè)面
,AB=BC=1,BB1=2,∠BCC1=
.
(1) 求證:C1B⊥平面ABC;
(2)設(shè)
=l
(0≤l≤1),且平面AB1E與BB1E所成的銳二面角
的大小為30°,試求l的值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形
是正方形,
平面
,
,
,
,
,
分別為
,
,
的中點(diǎn).![]()
(1)求證:![]()
平面
;
(2)求平面
與平面
所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以
,
為邊的平行四邊形的面積;
(2)若|a|=
,且a分別與
,
垂直,求向量a的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知棱長(zhǎng)為1的正方體AC1,E、F分別是B1C1、C1D的中點(diǎn).
(1)求點(diǎn)A1到平面的BDEF的距離;
(2)求直線A1D與平面BDEF所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,邊長(zhǎng)為1的正三角形
所在平面與直角梯形
所在平面垂直,且
,
,
,
,
、
分別是線段
、
的中點(diǎn).![]()
(1)求證:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐
的底面為正方形,側(cè)面![]()
底面
.
為等腰直角三角形,且
.
,
分別為底邊
和側(cè)棱
的中點(diǎn).![]()
(1)求證:
∥平面
;
(2)求證:
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,正方體
的棱長(zhǎng)為1,點(diǎn)
在側(cè)面
及其邊界上運(yùn)動(dòng),并且總保持
平行平面
,則動(dòng)點(diǎn)P的軌跡的長(zhǎng)度是 _______ .
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)二面角D-AE-C為60°,AP=1,AD=
,求三棱錐E-ACD的體積.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com