【題目】十九大以來(lái),國(guó)家深入推進(jìn)精準(zhǔn)脫貧,加大資金投入,強(qiáng)化社會(huì)幫扶,為了更好的服務(wù)于人民,派調(diào)查組到某農(nóng)村去考察和指導(dǎo)工作.該地區(qū)有100戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為2萬(wàn)元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),調(diào)查組和當(dāng)?shù)卣疀Q定動(dòng)員部分農(nóng)民從事水果加工,據(jù)估計(jì),若能動(dòng)員
戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高
,而從事水果加工的農(nóng)民平均每戶收入將為
萬(wàn)元.
(1)若動(dòng)員
戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動(dòng)員前從事水果種植的農(nóng)民的總年收入,求
的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求
的最大值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車間為了規(guī)定工時(shí)額定,需要確定加工零件所花費(fèi)的時(shí)間,為此作了
次試驗(yàn),得到數(shù)據(jù)如下:
零件數(shù) | 10 | 20 | 30 | 40 | 50 | 60 |
加工時(shí)間 | 64 | 70 | 77 | 82 | 90 | 97 |
(1)試對(duì)上述變量
與
的關(guān)系進(jìn)行相關(guān)性檢驗(yàn),如果
與
具有線性相關(guān)關(guān)系,求出
對(duì)
的回歸直線方程;
(2)根據(jù)(1)的結(jié)論,你認(rèn)為每小時(shí)加工零件的數(shù)量額定為多少(四舍五入為整數(shù))比較合理?
附:相關(guān)性檢驗(yàn)的臨界值表
| 小概率 | |
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
4 | 0.811 | 0.917 |
5 | 0.754 | 0.874 |
6 | 0.707 | 0.834 |
![]()
,![]()
參考數(shù)據(jù):
;![]()
|
|
|
|
|
17950 | 9100 | 39158 | 1750 | 758 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖2所示.
![]()
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求幾何體D﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面四邊形ABCD中,E,F是AD,BD中點(diǎn),
,
,將
沿對(duì)角線BD折起至
,使平面
平面BCD,則四面體
中,下列結(jié)論不正確的是( )
![]()
A.
平面![]()
B.異面直線CD與
所成的角為![]()
C.異面直線EF與
所成的角為![]()
D.直線
與平面BCD所成的角為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季進(jìn)了160盒該產(chǎn)品,以
(單位:盒,
)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,
(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
![]()
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量
的平均數(shù)和眾數(shù);
(2)將
表示為
的函數(shù);
(3)以需求量的頻率作為各需求量的概率,求開學(xué)季利潤(rùn)不少于4800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】張強(qiáng)同學(xué)進(jìn)行三次定點(diǎn)投籃測(cè)試,已知第一次投籃命中的概率為
,第二次投籃命中的概率為
,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為
,否則為
.
(1)求張強(qiáng)同學(xué)三次投籃至少命中一次的概率;
(2)記張強(qiáng)同學(xué)三次投籃命中的次數(shù)為隨機(jī)變量
,求
的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的圖象的一條對(duì)稱軸為
,其中
為常數(shù),且
,給出下述四個(gè)結(jié)論:
①函數(shù)
的最小正周期為
;
②將函數(shù)
的圖象向左平移
所得圖象關(guān)于原點(diǎn)對(duì)稱;
③函數(shù)
在區(qū)間
,上單調(diào)遞增;
④函數(shù)
在區(qū)間
上有
個(gè)零點(diǎn).
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.已知曲線
的極坐標(biāo)方程為
.傾斜角為
,且經(jīng)過(guò)定點(diǎn)
的直線
與曲線
交于
兩點(diǎn).
(Ⅰ)寫出直線
的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線
的直角坐標(biāo)方程;
(Ⅱ)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為促進(jìn)全面健身運(yùn)動(dòng),某地跑步團(tuán)體對(duì)本團(tuán)內(nèi)的跑友每周的跑步千米數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取的100名跑友,分別統(tǒng)計(jì)他們一周跑步的千米數(shù),并繪制了如圖頻率分布直方圖.
![]()
(1)由頻率分布直方圖計(jì)算跑步千米數(shù)不小于70千米的人數(shù);
(2)已知跑步千米數(shù)在
的人數(shù)是跑步千米數(shù)在
的
,跑步千米數(shù)在
的人數(shù)是跑步千米數(shù)在
的
,現(xiàn)在從跑步千米數(shù)在
的跑友中抽取3名代表發(fā)言,用
表示所選的3人中跑步千米數(shù)在
的人數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com