已知
(1)求
的最小值
(2)由(1)推出
的最小值C
(不必寫出推理過程,只要求寫出結(jié)果)
(3)在(2)的條件下,已知函數(shù)
若對(duì)于任意的
,恒有
成立,求
的取值范圍.
(1)![]()
(2)當(dāng)
時(shí),
的最小值為
.
(3)
.
解析試題分析:(1)![]()
當(dāng)![]()
![]()
(2)由(1)可推當(dāng)
時(shí),
的最小值為
.
(3)∵
∴![]()
令
,則
∴
在
上遞增
∵
,當(dāng)
時(shí),
∴存在
,使
,且
在
上遞減,
在
上遞增 (8分)
∵
∴
,即
(10分)
∵對(duì)于任意的
,恒有
成立
∴
∴![]()
∴
∴
∴
∵
∴![]()
![]()
∴
∴
. (14分)
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值及不等式恒成立問題。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,通過研究函數(shù)的單調(diào)性,明確了最值情況。涉及不等式恒成立問題,轉(zhuǎn)化成了研究函數(shù)的最值之間的差,從而利用“分離參數(shù)法”又轉(zhuǎn)化成函數(shù)的最值問題。涉及對(duì)數(shù)函數(shù),要特別注意函數(shù)的定義域。在給定區(qū)間,導(dǎo)函數(shù)值非負(fù),函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
(1)求函數(shù)
的極大值;
(2)記
的導(dǎo)函數(shù)為
,若
時(shí),恒有
成立,試確定實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)若
在
時(shí)有極值,求實(shí)數(shù)
的值和
的單調(diào)區(qū)間;
(Ⅱ)若
在定義域上是增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在
上是減函數(shù),求實(shí)數(shù)
的最小值;
(3)若
,使
成立,求實(shí)數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,其中
為實(shí)常數(shù).
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)討論
在定義域
上的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)討論函數(shù)
的單調(diào)區(qū)間;
(2)已知
對(duì)定義域內(nèi)的任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
的圖象在點(diǎn)
處的切線的傾斜角為
,對(duì)于任意的
,函數(shù)
在區(qū)間
上總不是單調(diào)函數(shù),
求實(shí)數(shù)
的取值范圍;
(3)求證
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com