【題目】從某校高中男生中隨機選取100名學(xué)生,將他們的體重(單位:
)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.
![]()
(1)估計該校的100名同學(xué)的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點值作代表);
(2)若要從體重在
,
內(nèi)的兩組男生中,用分層抽樣的方法選取5人,再從這5人中隨機抽取3人,記體重在
內(nèi)的人數(shù)為
,求其分布列和數(shù)學(xué)期望
.
【答案】(1)64.5;(2)1.8
【解析】試題分析:(1)根據(jù)組中值與對應(yīng)區(qū)間概率乘積的和計算平均體重,(2)先確定各區(qū)間人數(shù),再確定隨機變量,根據(jù)組合數(shù)求對應(yīng)區(qū)間概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.
試題解析:(1)依頻率分布直方圖得各組的頻率依次為:
,故估計100名學(xué)生的平均體重約為: ![]()
(2)由(1)及已知可得:體重在
的男生分別為:
從中用分層抽樣的方法選5人,則體重在
內(nèi)的應(yīng)選3人,體重在
內(nèi)的應(yīng)選2人,從而
的可能取值為1,2,3且得:
![]()
其分布列為:
P | 1 | 2 | 3 |
|
|
|
|
故得: ![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,AE垂直于平面
,
,
,點F為平面ABC內(nèi)一點,記直線EF與平面BCE所成角為
,直線EF與平面ABC所成角為
.
![]()
Ⅰ
求證:
平面ACE;
Ⅱ
若
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)若曲線
在點
處的切線經(jīng)過點
,求a的值;
(2)若
在
內(nèi)存在極值,求a的取值范圍;
(3)當(dāng)
時,
恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某登山隊在山腳
處測得山頂
的仰角為
,沿傾斜角為
(其中
)的斜坡前進(jìn)
后到達(dá)
處,休息后繼續(xù)行駛
到達(dá)山頂
.
![]()
(1)求山的高度
;
(2)現(xiàn)山頂處有一塔
.從
到
的登山途中,隊員在點
處測得塔的視角為
.若點
處高度
為
,則
為何值時,視角
最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知函數(shù)
(
為常數(shù))的圖像與
軸交于點
,曲線
在點
處的切線斜率為
.
(1)求
的值及函數(shù)
的極值;
(2)證明:當(dāng)
時,![]()
(3)證明:對任意給定的正數(shù)
,總存在
,使得當(dāng)
時,恒有![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)是否存在實數(shù)
,使得函數(shù)
的極值大于
?若存在,求
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程為x2+y2﹣4x﹣12=0,點P(3,1).
(1)求該圓的圓心坐標(biāo)及半徑;
(2)求過點P的直線被圓C截得弦長最大時的直線l的方程;
(3)若圓C的一條弦AB的中點為P,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
的圖象經(jīng)過點
,且相鄰的兩條對稱軸之間的距離為
.
(1)求函數(shù)
的解析式;
(2)若將函數(shù)
的圖象向右平移
個單位后得到函數(shù)
的圖象,當(dāng)
時,
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
(1)當(dāng)
時,求
的最大值和最小值;
(2)求實數(shù)
的取值范圍,使
在區(qū)間
上是單調(diào)函數(shù).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com