欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.已知函數(shù)f(x)=$\frac{ax}{{x}^{2}+1}$+a,g(x)=aln x-x(a≠0).
(Ⅰ)求函數(shù)f (x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)a>0時(shí),對(duì)于任意x1,x2∈(0,e],總有g(shù)(x1)<f (x2)成立,其中e=2.71828…是自然對(duì)數(shù)的底數(shù).

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出f(x)的范圍,通過(guò)討論a的范圍得到g(x)的單調(diào)區(qū)間,求出g(x)的最大值,證明結(jié)論即可.

解答 解:(Ⅰ)函數(shù)f (x)的定義域?yàn)镽,f′(x)=$\frac{a(1-x2)}{(x2+1)2}$=$\frac{a(1-x)(1+x)}{(x2+1)2}$,
當(dāng)a>0時(shí),當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:

x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)-0+0-
f (x)
當(dāng)a<0時(shí),當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)+0-0+
f (x)
綜上所述,
當(dāng)a>0時(shí),f (x)的單調(diào)遞增區(qū)間為(-1,1),單調(diào)遞減區(qū)間為(-∞,-1),(1,+∞);
當(dāng)a<0時(shí),f (x)的單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞),單調(diào)遞減區(qū)間為(-1,1).
(Ⅱ)由(Ⅰ)可知,當(dāng)a>0時(shí),f (x)在區(qū)間(0,1)上單調(diào)遞增,f (x)>f (0)=a;
f (x)在區(qū)間(1,e]上單調(diào)遞減,且f (e)=$\frac{ae}{{e}^{2}+1}$+a>a,所以當(dāng)x∈(0,e]時(shí),f (x)>a,
因?yàn)間(x)=aln x-x,所以g′(x)=$\frac{a}{x}$-1,令g′(x)=0,得x=a.
①當(dāng)a≥e時(shí),g′(x)≥0在區(qū)間(0,e]上恒成立,
所以函數(shù)g(x)在區(qū)間(0,e]上單調(diào)遞增,所以g(x)max=g(e)=a-e<a.
所以對(duì)于任意x1,x2∈(0,e],仍有g(shù)(x1)<f(x2).               
②當(dāng)0<a<e時(shí),由g′(x)>0,得0<x<a;由g′(x)<0,得e≥x>a,
所以函數(shù)g(x)在區(qū)間(0,a)上單調(diào)遞增,在區(qū)間(a,e]上單調(diào)遞減.
所以g(x)max=g(a)=aln a-a;
因?yàn)閍-(aln a-a)=a(2-ln a)>a(2-ln e)=a>0,
所以對(duì)任意x1,x2∈(0,e],總有g(shù)(x1)<f (x2).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,△AB1C1,△B1B2C2,△B2B3C3是三個(gè)邊長(zhǎng)為2的等邊三角形,且有一條邊在同一直線上,邊B3C3上有5個(gè)不同的點(diǎn)P1,P2,P3,P4,P5,設(shè)${m_i}=\overrightarrow{A{C_2}}•\overrightarrow{A{P_i}}$(i=1,2,…,5),則m1+m2+…+m5=90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測(cè)量產(chǎn)品中的微量元素x,y的含量(單位:毫克),如表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào)12345
x169178166175180
y7580777081
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1)用輾轉(zhuǎn)相除法求117與182的最大公約數(shù),并用更相減損術(shù)檢驗(yàn).
(2)用秦九韶算法求多項(xiàng)式f(x)=1-9x+8x2-4x4+5x5+3x6在x=-1的值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若$f(x)=-\frac{1}{2}{x^2}+bln({2x+4})$在(-2,+∞)上是減函數(shù),則b的范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知焦距為2$\sqrt{3}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1、上頂點(diǎn)為D,直線DF1與橢圓C的另一個(gè)交點(diǎn)為H,且|DF1|=7|F1H|.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若橢圓的焦距為2,且$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.記數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=3an+1,則a10=( 。
A.-$\frac{{3}^{9}}{{2}^{10}}$B.-$\frac{{3}^{10}}{{2}^{10}}$C.$\frac{{3}^{9}}{{2}^{10}}$D.$\frac{{3}^{10}}{{2}^{10}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.過(guò)點(diǎn)M(2,-2p)作拋物線x2=2py(p>0)的兩條切線,切點(diǎn)分別為A,B,若線段AB中點(diǎn)的縱坐標(biāo)為6,則拋物線的方程為(  )
A.x2=2yB.x2=4yC.x2=2y或x2=4yD.x2=3y或x2=2y

查看答案和解析>>

同步練習(xí)冊(cè)答案