【題目】在
展開(kāi)式的全體系數(shù)中,有多少個(gè)7的倍數(shù)?
【答案】1722
【解析】
將問(wèn)題一般化.
先證明一個(gè)引理.
引理 設(shè)
為正整數(shù),
為素?cái)?shù),
.若在
的
進(jìn)制表達(dá)式的各位數(shù)碼中,共有
個(gè)1,
個(gè)2,…,
個(gè)
,則在
展開(kāi)式的各系數(shù)中,
的倍數(shù)的個(gè)數(shù)為
.
證明 先求集合
中與
互素的元素個(gè)數(shù).
記
.
因?yàn)?/span>
為素?cái)?shù),
,所以,
.而
,
故
,
其中,
表示不超過(guò)實(shí)數(shù)
的最大整數(shù).
注意到,對(duì)每個(gè)
均有
.
故
. ①
設(shè)![]()
,
,其中,
、
、
.
由式①依次得
,
.
對(duì)于上面每一式
,
可以取0,1,…,
共
個(gè)值,故在集合
中,使得
的
有
個(gè).
若
的
進(jìn)制表示
的各位數(shù)碼
中,共有
個(gè)1,
個(gè)2,…,
個(gè)
,則
,即集合
中有
個(gè)數(shù)與
互素.
從而,在集合
中有
個(gè)數(shù)為
的倍數(shù).
回到原題.
由2015的七進(jìn)制表達(dá)式為
,其數(shù)碼中有一個(gè)5,兩個(gè)6,則在
展開(kāi)式的各系數(shù)中,7的倍數(shù)有
(個(gè)).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)
作直線與兩坐標(biāo)軸分別交于點(diǎn)
、
.當(dāng)
的面積
在
上變化時(shí),直線
條數(shù)的集合為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
是定義在
上的偶函數(shù),且對(duì)任意的
恒有
,已知當(dāng)
時(shí),
,則
①
是函數(shù)
的一個(gè)周期;
②函數(shù)
在
上是減函數(shù),在
上是增函數(shù);
③函數(shù)
的最大值是
,最小值是
;
④
是函數(shù)
的一個(gè)對(duì)稱軸;
其中所有正確命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱
的所有棱長(zhǎng)均為2,底面
側(cè)面
,
,
為
的中點(diǎn),
.
(1)證明:
.
(2)若
是
棱上一點(diǎn),滿足
,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)常數(shù)
.在平面直角坐標(biāo)系
中,已知點(diǎn)
,直線
:
,曲線
:
.
與
軸交于點(diǎn)
、與
交于點(diǎn)
.
、
分別是曲線
與線段
上的動(dòng)點(diǎn).
![]()
(1)用
表示點(diǎn)
到點(diǎn)
距離;
(2)設(shè)
,
,線段
的中點(diǎn)在直線
,求
的面積;
(3)設(shè)
,是否存在以
、
為鄰邊的矩形
,使得點(diǎn)
在
上?若存在,求點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程;
(2)若
與曲線
相切,且
與坐標(biāo)軸交于
兩點(diǎn),求以
為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形
所在平面與半圓弧
所在平面垂直,
是
上異于
,
的點(diǎn).
(1)證明:平面
平面
;
(2)在線段
上是否存在點(diǎn)
,使得
平面
?說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)
為
內(nèi)一點(diǎn),直線
、
、
與邊
、
、
分別交于點(diǎn)
、
、
.設(shè)分別以
、
為直徑的兩圓交于點(diǎn)
、
,分別以
、
為直徑的兩圓交于點(diǎn)
、
,分別以
、
為直徑的兩圓交于點(diǎn)
、
.證明:
、
、
、
、
、
六點(diǎn)共圓.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )
A.
種 B.
種 C.
種 D.
種
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com