【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sinA+
cosA=0,a=2
,b=2.
(Ⅰ)求c;
(Ⅱ)設(shè)D為BC邊上一點(diǎn),且AD⊥AC,求△ABD的面積.
【答案】解:(Ⅰ)∵sinA+
cosA=0,
∴tanA=
,
∵0<A<π,
∴A=
,
由余弦定理可得a2=b2+c2﹣2bccosA,
即28=4+c2﹣2×2c×(﹣
),
即c2+2c﹣24=0,
解得c=﹣6(舍去)或c=4,![]()
(Ⅱ)∵c2=b2+a2﹣2abcosC,
∴16=28+4﹣2×2
×2×cosC,
∴cosC=
,
∴sinC=
,
∴tanC= ![]()
在Rt△ACD中,tanC=
,
∴AD=
,
∴S△ACD=
ACAD=
×2×
=
,
∵S△ABC=
ABACsin∠BAD=
×4×2×
=2
,
∴S△ABD=S△ABC﹣S△ADC=2
﹣
= ![]()
【解析】(Ⅰ)先根據(jù)同角的三角函數(shù)的關(guān)系求出A,再根據(jù)余弦定理即可求出,
(Ⅱ)先根據(jù)夾角求出cosC,求出AD的長(zhǎng),再求出△ABC和△ADC的面積,即可求出△ABD的面積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解同角三角函數(shù)基本關(guān)系的運(yùn)用的相關(guān)知識(shí),掌握同角三角函數(shù)的基本關(guān)系:![]()
;![]()
;(3) 倒數(shù)關(guān)系:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投人某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)
對(duì)年銷售額(單位:萬(wàn)元)的影響,對(duì)近6年的年宣傳費(fèi)
和年銷售額
數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)宣傳費(fèi)
和年銷售額
具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
![]()
(I)根據(jù)表中數(shù)據(jù)建立
關(guān)于
的回歸方程;
(Ⅱ)利用(I)中的回歸方程預(yù)測(cè)該公司如果對(duì)該產(chǎn)品的宜傳費(fèi)支出為10萬(wàn)元時(shí)銷售額是
萬(wàn)元,該公司計(jì)劃從10名中層管理人員中挑選3人擔(dān)任總裁助理,10名中層管理人員中有2名是技術(shù)部骨干,記所挑選3人中技術(shù)部骨干人數(shù)為
且隨機(jī)變量
,求
的概率分布列與數(shù)學(xué)期望.
附:回歸直線的傾斜率截距的最小二乘估計(jì)公式分別為:
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高考改革是教育體制改革中的重點(diǎn)領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會(huì)極其關(guān)注.近年來(lái),在新高考改革中,打破文理分科的“
”模式初露端倪.其中“
”指必考科目語(yǔ)文、數(shù)學(xué)、外語(yǔ),“
”指考生根據(jù)本人興趣特長(zhǎng)和擬報(bào)考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇
門作為選考科目,其中語(yǔ)、數(shù)、外三門課各占
分,選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來(lái)劃分等級(jí)并以此打分得到最后得分.假定
省規(guī)定:選考科目按考生成績(jī)從高到低排列,按照占總體
的,以此賦分
分、
分、
分、
分.為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績(jī)的方法,
省某高中高一(
)班(共
人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計(jì)算成績(jī)),已知這次摸底考試中的物理成績(jī)(滿分
分)頻率分布直方圖,化學(xué)成績(jī)(滿分
分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理
分,化學(xué)
多分.
![]()
(1)求小明物理成績(jī)的最后得分;
(2)若小明的化學(xué)成績(jī)最后得分為
分,求小明的原始成績(jī)的可能值;
(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量
=(cosx,sinx),
=(3,﹣
),x∈[0,π].
(Ⅰ)若
∥
,求x的值;
(Ⅱ)記f(x)=
,求f(x)的最大值和最小值以及對(duì)應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒中裝有
個(gè)零件,其中
個(gè)是使用過(guò)的,另外
個(gè)未經(jīng)使用.
(1)從盒中每次隨機(jī)抽取
個(gè)零件,每次觀察后都將零件放回盒中,求
次抽取中恰有
次抽到使用過(guò)的零件的概率;
(2)從盒中隨機(jī)抽取
個(gè)零件,使用后放回盒中,記此時(shí)盒中使用過(guò)的零件個(gè)數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,
]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系
中,直線
的參數(shù)方程為
,(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
是曲線
上的一個(gè)動(dòng)點(diǎn),求它到直線
的距離
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線E:
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , P是E坐支上一點(diǎn),且|PF1|=|F1F2|,直線PF2與圓x2+y2=a2相切,則E的離心率為 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com