【題目】設(shè)實(shí)數(shù)
,
滿足約束條件
,則
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】A
【解析】分析:作出題中不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=|x|﹣y對(duì)應(yīng)的直線進(jìn)行平移,觀察直線在y軸上的截距變化,即可得出z的取值范圍.
詳解:作出實(shí)數(shù)x,y滿足約束條件
表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,
其中A(﹣1,﹣2),B(0,
),O(0,0).
設(shè)z=F(x,y)=|x|﹣y,將直線l:z=|x|﹣y進(jìn)行平移,
觀察直線在y軸上的截距變化,
當(dāng)x≥0時(shí),直線為圖形中的紅色線,可得當(dāng)l經(jīng)過(guò)B與O點(diǎn)時(shí),
取得最值z(mì)∈[0,
],
當(dāng)x<0時(shí),直線是圖形中的藍(lán)色直線,
經(jīng)過(guò)A或B時(shí)取得最值,z∈[﹣
,3]
綜上所述,z∈[﹣
,3].
故答案為:A.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,C為圓周上一點(diǎn),過(guò)C作圓O的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E. ![]()
(1)求證:ABDE=BCCE;
(2)若AB=8,BC=4,求線段AE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列
的公差
,數(shù)列
滿足
,集合
.
(1)若
,
,求集合
;
(2)若
,求
使得集合
恰有兩個(gè)元素;
(3)若集合
恰有三個(gè)元素,
,T是不超過(guò)5的正整數(shù),求T的所有可能值,并寫(xiě)出與之相應(yīng)的一個(gè)等差數(shù)列
的通項(xiàng)公式及集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
的參數(shù)方程是
為參數(shù)
,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)寫(xiě)出
的極坐標(biāo)方程和
的直角坐標(biāo)方程;
(2)已知點(diǎn)
、
的極坐標(biāo)分別是
、
,直線
與曲線
相交于P、Q兩點(diǎn),射線OP與曲線
相交于點(diǎn)A,射線OQ與曲線
相交于點(diǎn)B,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a>b,a=5,c=6,sinB=
.
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+
)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答下列問(wèn)題:
(1)求平行于直線3x+4y- 2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y -5=0且與點(diǎn)P( -1,0)的距離是
的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sinA+
cosA=0,a=2
,b=2.
(Ⅰ)求c;
(Ⅱ)設(shè)D為BC邊上一點(diǎn),且AD⊥AC,求△ABD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=|x+
﹣a|+a在區(qū)間[1,4]上的最大值是5,則a的取值范圍是 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com