【題目】在如圖三棱錐A-BCD中,BD⊥CD,E,F分別為棱BC,CD上的點(diǎn),且BD∥平面AEF,AE⊥平面BCD.
![]()
(1)求證:平面AEF⊥平面ACD;
(2)若
,
為
的中點(diǎn),求直線
與平面
所成角的正弦值.
【答案】(1)見(jiàn)解析(2)![]()
【解析】
(1)證明
,
進(jìn)而可得
即可證明平面AEF⊥平面ACD
(2) 分別以
為x,y,z軸建立空間直角坐標(biāo)系,再根據(jù)構(gòu)造的直角三角形的關(guān)系求得每邊的長(zhǎng)度,再利用空間向量求解線面夾角即可.
解:(1)證明:因?yàn)?/span>
,
,![]()
所以
,因?yàn)?/span>
,所以
.
又因?yàn)?/span>
,
,
所以
,而
,
所以
,又
,
所以
.
(2)解:設(shè)直線
與平面
所成交的余弦值為
.
連接
,在
中,
,
,
,所以
,且
,
,
又因?yàn)?/span>
,
,
,
所以
,
.在
中,
,
,所以
.
如圖,以點(diǎn)
為坐標(biāo)原點(diǎn),分別以
為x,y,z軸建立空間直角坐標(biāo)系,各點(diǎn)坐標(biāo)為
,
,
,
,
![]()
因?yàn)?/span>
,
為
的中點(diǎn),所以
為
的中點(diǎn),即
,
設(shè)平面
的法向量
,
,
,
由
,即
,
整理得
,令
,得
,
,則
.
因?yàn)?/span>
,所以
,
故直線
與平面
所成交的正弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
的右頂點(diǎn)為
,過(guò)點(diǎn)
作直線
與圓
相切,與橢圓
交于另一點(diǎn)
,與右準(zhǔn)線交于點(diǎn)
.設(shè)直線
的斜率為
.
![]()
(1)用
表示橢圓
的離心率;
(2)若
,求橢圓
的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是邊長(zhǎng)為2的正方形,
,
為
的中點(diǎn),點(diǎn)
在
上,
平面
,
在
的延長(zhǎng)線上,且
.
![]()
(1)證明:
平面
.
(2)過(guò)點(diǎn)
作
的平行線,與直線
相交于點(diǎn)
,點(diǎn)
為
的中點(diǎn),求
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)記
表示
中的最小值,設(shè)
,若函數(shù)
至少有三個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
有兩個(gè)極值點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)已知
,
,
是
的三個(gè)零點(diǎn),且
.當(dāng)
時(shí),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年慶祝中華人民共和國(guó)成立70周年閱兵式彰顯了中華民族從站起來(lái)、富起來(lái)邁向強(qiáng)起來(lái)的雄心壯志.閱兵式規(guī)模之大、類(lèi)型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱(chēng)“強(qiáng)軍利刃”“強(qiáng)國(guó)之盾”,見(jiàn)證著人民軍隊(duì)邁向世界一流軍隊(duì)的堅(jiān)定步伐.此次大閱兵不僅得到了全中國(guó)人的關(guān)注,還得到了無(wú)數(shù)外國(guó)人的關(guān)注.某單位有10位外國(guó)人,其中關(guān)注此次大閱兵的有8位,若從這10位外國(guó)人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)三棱錐
的每個(gè)頂點(diǎn)都在球
的球面上,
是面積為
的等邊三角形,
,
,且平面
平面
.
![]()
(1)確定
的位置(需要說(shuō)明理由),并證明:平面
平面
.
(2)與側(cè)面
平行的平面
與棱
,
,
分別交于
,
,
,求四面體
的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了減輕家庭困難的高中學(xué)生的經(jīng)濟(jì)負(fù)擔(dān),讓更多的孩子接受良好的教育,國(guó)家施行高中生國(guó)家助學(xué)金政策,普通高中國(guó)家助學(xué)金平均資助標(biāo)準(zhǔn)為每生每年1500元,具體標(biāo)準(zhǔn)由各地結(jié)合實(shí)際在1000元至3000元范圍內(nèi)確定,可以分為兩或三檔.各學(xué)校積極響應(yīng)政府號(hào)召,通過(guò)各種形式宣傳國(guó)家助學(xué)金政策.為了解某高中學(xué)校對(duì)國(guó)家助學(xué)金政策的宣傳情況,擬采用隨機(jī)抽樣的方法抽取部分學(xué)生進(jìn)行采訪調(diào)查.
(1)若該高中學(xué)校有2000名在校學(xué)生,編號(hào)分別為0001,0002,0003,…,2000,請(qǐng)用系統(tǒng)抽樣的方法,設(shè)計(jì)一個(gè)從這2000名學(xué)生中抽取50名學(xué)生的方案.(寫(xiě)出必要的步驟)
(2)該校根據(jù)助學(xué)金政策將助學(xué)金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級(jí)共評(píng)定出3個(gè)1檔,2個(gè)2檔,1個(gè)3檔,若從該班獲得助學(xué)金的學(xué)生中選出2名寫(xiě)感想,求這2名同學(xué)不在同一檔的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓柱
底面半徑為1,高為
,
是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)
從點(diǎn)
出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn)
,其距離最短時(shí)在側(cè)面留下的曲線
如圖所示.將軸截面
繞著軸
逆時(shí)針旋轉(zhuǎn)
后,邊
與曲線
相交于點(diǎn)
.
![]()
(1)求曲線
的長(zhǎng)度;
(2)當(dāng)
時(shí),求點(diǎn)
到平面
的距離.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com