【題目】求下列各式的值:
(1)
;
(2)
.
【答案】(1)
;(2)1.
【解析】試題分析:指數(shù)冪運算要嚴格按照冪運算定義和法則運算,法則包括同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘;積的乘方等于把積中每個因數(shù)乘方,再把所得的冪相乘;對數(shù)運算要注意利用對數(shù)運算法則,包括積、商、冪的對數(shù)運算法則,這些公式既要學會正用,還要學會反著用.
試題解析:
(1)原式=
=
=
.
原式=![]()
=
=
.
【點精】指數(shù)冪運算要嚴格按照冪運算定義和法則運算,指數(shù)運算包括正整指數(shù)冪、負指數(shù)冪、零指數(shù)冪、分數(shù)指數(shù)冪的定義,法則包括同底數(shù)冪的懲罰和除法,冪的乘方、積的乘方;對數(shù)運算要注意利用對數(shù)運算法則,包括積、商、冪的對數(shù)運算法則,這些公式既要學會正用,還要學會反著用,指數(shù)對數(shù)運算還要靈活進行指、對互化.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
,
,
且
.
(1)討論函數(shù)
的單調性;
(2)若
,且對任意的
,總存在
,使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:
的右焦點為F,右頂點為A,設離心率為e,且滿足
,其中O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點
的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)悉遵義市紅花崗區(qū)、匯川區(qū)2017年現(xiàn)有人口總數(shù)為110萬人,如果年自然增長率為
%,試解答以下問題:
(1)寫出經(jīng)過
年后,遵義市人口總數(shù)
(單位:萬人)關于
的函數(shù)關系式;
(2)計算10年以后遵義市人口總數(shù)(精確到0.1萬人);
(3)計算經(jīng)過多少年后遵義市人口將達到150萬人(精確到1年)
(參考數(shù)據(jù): ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系
中,直線
的參數(shù)方程是
(
為參數(shù)),以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,且直線
與曲線
交于
兩點.
(Ⅰ)求曲線
的直角坐標方程及直線
恒過的定點
的坐標;
(Ⅱ)在(Ⅰ)的條件下,若
,求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)對任意x∈(0,+∞),
恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能
與韓國棋手李世石進行最后一輪較量,
獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格在
.人機大戰(zhàn)也引發(fā)全民對圍棋的關注,某學校社團為調查學生學習圍棋的情況,隨機抽取了100名學生進行調查.根據(jù)調查結果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
![]()
(1)根據(jù)已知條件完成如圖列聯(lián)表,并據(jù)此資料判斷你是否有
的把握認為“圍棋迷”與性別有關?
(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記所抽取的3名學生中的“圍棋迷”人數(shù)為
.若每次抽取的結果是相互獨立的,求
的分布列,期望
和方差
.
附:
,其中
.
| 0.05 | 0.010 |
| 3.74 | 6.63 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了增強環(huán)保意識,某社團從男生中隨機抽取了60人,從女生中隨機抽取了50人參加環(huán)保知識測試,統(tǒng)計數(shù)據(jù)如下表所示:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
(1)試判斷是否有99%的把握認為環(huán)保知識是否優(yōu)秀與性別有關;
(2)為參加市舉辦的環(huán)保知識競賽,學校舉辦預選賽,現(xiàn)在環(huán)保測試優(yōu)秀的同學中選3人參加預選賽,已知在環(huán)保測試中優(yōu)秀的同學通過預選賽的概率為
,若隨機變量
表示這3人中通過預選賽的人數(shù),求
的分布列與數(shù)學期望.
附:
=![]()
| 0.500 | 0.400 | 0.100 | 0.010 | 0.001 |
| 0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com