已知函數(shù)
,其中
.
(Ⅰ)若
,求曲線
在點
處的切線方程;
(Ⅱ)若在區(qū)間
上,
恒成立,求
的取值范圍.
(Ⅰ)解:當(dāng)a=1時,f(x)=
,f(2)=3;f’(x)=
, f’(2)=6.所以曲線y=f(x)在點(2,f(2))處的切線方程為y-3=6(x-2),即y=6x-9.
(Ⅱ)解:f’(x)=
.令f’(x)=0,解得x=0或x=
.
以下分兩種情況討論:
(1) 若
,當(dāng)x變化時,f’(x),f(x)的變化情況如下表:
| X |
| 0 |
|
| f’(x) | + | 0 | - |
| f(x) |
| 極大值 |
|
當(dāng)
等價于![]()
解不等式組得-5<a<5.因此
.
(2) 若a>2,則
.當(dāng)x變化時,f’(x),f(x)的變化情況如下表:
| X |
| 0 |
|
|
|
| f’(x) | + | 0 | - | 0 | + |
| f(x) |
| 極大值 |
| 極小值 |
|
當(dāng)
時,f(x)>0等價于
即![]()
解不等式組得
或
.因此2<a<5.
綜合(1)和(2),可知a的取值范圍為0<a<5.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
將某個圓錐沿著母線和底面圓周剪開后展開,所得的平面圖是一個圓和扇形,己知該扇形的半徑為24cm,圓心角為
,則圓錐的體積是________
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
關(guān)于函數(shù)
,有下列結(jié)論:
①函數(shù)
的定義域是
;
②函數(shù)
是奇函數(shù);
③函數(shù)
的最小值為
;
④當(dāng)
時,函數(shù)
是增函數(shù);當(dāng)
時,函數(shù)
是減函數(shù);
其中正確結(jié)論的序號是 .(寫出所有你認(rèn)為正確的結(jié)論的序號)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com