(
本小題滿分14分)
已知點(diǎn)
,點(diǎn)
是⊙
:
上任意兩個(gè)不同的點(diǎn),且滿足
,設(shè)
為弦
的中點(diǎn).![]()
(1)求點(diǎn)
的軌跡
的方程;
(2)試探究在軌跡
上是否存在這樣的點(diǎn):它到直線
的距離恰好等于到點(diǎn)
的距離?若存在,求出這樣的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線
,圓![]()
(1)判斷直線
和圓
的位置關(guān)系;
(2)若直線
和圓
相交,求相交弦長(zhǎng)最小時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)已知圓M過(guò)定點(diǎn)
,圓心M在二次曲線
上運(yùn)動(dòng)(1)若圓M與y軸相切,求圓M方程;(2) 已知圓M的圓心M在第一象限, 半徑為
,動(dòng)點(diǎn)
是圓M外一點(diǎn),過(guò)點(diǎn)
與圓M相切的切線的長(zhǎng)為3,求動(dòng)點(diǎn)
的軌跡方程;(3)若圓M與x軸交于A,B兩點(diǎn),設(shè)
,求
的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓x2+y2-4ax+2ay+20(a-1)=0.
(1)求證對(duì)任意實(shí)數(shù)a,該圓恒過(guò)一定點(diǎn);
(2)若該圓與圓x2+y2=4相切,求a的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓M的方程為:x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)為圓心的圓N與圓M相切.
(1)求圓N的方程;
(2)圓N與x軸交于E、F兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)D使得|DE|、|DO|、|DF|成等比數(shù)列,求·的取值范圍;
(3)過(guò)點(diǎn)M作兩條直線分別與圓N相交于A、B兩點(diǎn),且直線MA和直線MB的傾斜角互補(bǔ),試判斷直線MN和AB是否平行?請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在一個(gè)直徑是50的球形器材中,嵌入一根圓軸(如圖5-5),為了使圓軸不易脫出,
應(yīng)該使它與球有最大的接觸面積,問(wèn)圓軸的半徑x應(yīng)是多少?![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-1,0),(1,
0),離心率
,直線
與橢圓C交于不同的兩點(diǎn)M,N,以線段MN為直徑作圓P。
(1)求橢圓C的方程;
(2)若圓P恰過(guò)坐標(biāo)原點(diǎn),求圓P的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知F是拋物線y2=x的焦點(diǎn),A、B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB
的中點(diǎn)到y(tǒng)軸的距離為
A.
B.1 C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
從橢圓短軸的一個(gè)端點(diǎn)看長(zhǎng)軸的兩個(gè)端點(diǎn)的視角為
,那么此橢圓的離心率為( )
| A. | B. | C. | D. |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com