【題目】已知命題p:
,
;命題q:方程
表示雙曲線.
⑴若命題p為真命題,求實數(shù)m的取值范圍;
⑵若命題“
”為真命題,“
”為假命題,求實數(shù)m的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個命題中,其中正確命題的序號為____________.
① 函數(shù)
是周期為
的偶函數(shù);
② 若
是第一象限的角,且
,則
;
③
是函數(shù)
的一條對稱軸方程;
④ 在
內(nèi)方程
有3個解
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線
和圓
的普通方程;
(2)已知直線
上一點(diǎn)
,若直線
與圓
交于不同兩點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
,判斷函數(shù)
的奇偶性,并加以證明;
(2)若函數(shù)
在
上是增函數(shù),求實數(shù)
的取值范圍;
(3)若存在實數(shù)
使得關(guān)于
的方程
有三個不相等的實數(shù)根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的直角頂點(diǎn)
在
軸上,點(diǎn)
為斜邊
的中點(diǎn),且
平行于
軸.
(Ⅰ)求點(diǎn)
的軌跡方程;
(Ⅱ)設(shè)點(diǎn)
的軌跡為曲線
,直線
與
的另一個交點(diǎn)為
.以
為直徑的圓交
軸于
即此圓的圓心為
,
求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
,
為
的中點(diǎn),
平面
,垂足
落在線段
上,
為
的重心,已知
,
,
,
.
![]()
(1)證明:
平面
;
(2)求異面直線
與
所成角的余弦值;
(3)設(shè)點(diǎn)
在線段
上,使得
,試確定
的值,使得二面角
為直二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為y,觀影人數(shù)記為x,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后y與x的函數(shù)圖象,給出下列四種說法,①圖(2)對應(yīng)的方案是:提高票價,并提高成本;②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;④圖(3)對應(yīng)的方案是:提高票價,并降低成本.其中,正確的說法是( 。
![]()
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品每千克定價10元,商家采取了如下的促銷方式:
一次購買量 | 促銷方式 |
不多于20千克 | 原價出售 |
多于20千克且不多于40千克 | 不多于20千克部分,原價出售 多于20千克部分,九折出售 |
多于40千克 | 不多于20千克部分,原價出售 多于20千克且不多于40千克部分,九折出售 多于40千克部分八折出售 |
(1)求一次購買
(單位:千克),此商品的花費(fèi)
(單位:元)的函數(shù)解析式;
(2)某人一次購買此商品400元,問他能購得此商品多少千克?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com