欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.已知[x]表示不超過x的最大整數(shù),例如[π]=3
S1=$[{\sqrt{1}}]+[{\sqrt{2}}]+[{\sqrt{3}}]=3$
S2=$[{\sqrt{4}}]+[{\sqrt{5}}]+[{\sqrt{6}}]+[{\sqrt{7}}]+[{\sqrt{8}}]=10$
S3=$[{\sqrt{9}}]+[{\sqrt{10}}]+[{\sqrt{11}}]+[{\sqrt{12}}]+[{\sqrt{13}}]+[{\sqrt{14}}]+[{\sqrt{15}}]=21$,…
依此規(guī)律,那么S10=210.

分析 由已知可得Sn=[$\sqrt{{n}^{2}}$]+[$\sqrt{{n}^{2}+1}$]+…+[$\sqrt{{n}^{2}+2n-1}$]+[$\sqrt{{n}^{2}+2n}$]=n×(2n+1),代值計(jì)算即可

解答 解:[x]表示不超過x的最大整數(shù),
S1=$[{\sqrt{1}}]+[{\sqrt{2}}]+[{\sqrt{3}}]=3$=1×3
S2=$[{\sqrt{4}}]+[{\sqrt{5}}]+[{\sqrt{6}}]+[{\sqrt{7}}]+[{\sqrt{8}}]=10$=2×5
S3=$[{\sqrt{9}}]+[{\sqrt{10}}]+[{\sqrt{11}}]+[{\sqrt{12}}]+[{\sqrt{13}}]+[{\sqrt{14}}]+[{\sqrt{15}}]=21$=3×7,

∴Sn=[$\sqrt{{n}^{2}}$]+[$\sqrt{{n}^{2}+1}$]+…+[$\sqrt{{n}^{2}+2n-1}$]+[$\sqrt{{n}^{2}+2n}$]=n×(2n+1),
∴S10=10×21=210,
故答案為:210

點(diǎn)評 本題考查了歸納推理的問題,關(guān)鍵是找到規(guī)律,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z滿足$\frac{1-i}{\overline{z}}$=i(其中i為虛數(shù)單位),則z2=( 。
A.2iB.-2iC.2+2iD.2-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.現(xiàn)有7名數(shù)理化成績優(yōu)秀者,分別用A1,A2,A3,B1,B2,C1,C2表示,其中A1,A2,A3的數(shù)學(xué)成績優(yōu)秀,B1,B2的物理成績優(yōu)秀,C1,C2的化學(xué)成績優(yōu)秀.從中選出數(shù)學(xué)、物理、化學(xué)成績優(yōu)秀者各1名,組成一個小組代表學(xué)校參加競賽,則A1或B1僅一人被選中的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果復(fù)數(shù)$\frac{3-bi}{2+i}(b∈R)$的實(shí)部與虛部相等,則b的值為( 。
A.1B.-6C.3D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,點(diǎn)D為BC的中點(diǎn).
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點(diǎn)E為A1C上的點(diǎn),且滿足A1E=mEC(m∈R),三棱錐E-ADC的體積與三棱柱ABC-A1B1C1的體積之比為1:12,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a>0,函數(shù)f(x)=lnx-ax2
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)$a=\frac{1}{8}$時,證明:存在x0∈(2,+∞),使$f({x_0})=f({\frac{3}{2}})$;
(3)若存在屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明:$\frac{ln3-ln2}{5}≤a≤\frac{ln2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3}{2}$an-$\frac{1}{2}$
(1)求a1
(2)求{an}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若 $\int_1^a{\frac{2}{x}dx}=4$,則 a=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.要得到函數(shù)$y=cos(\frac{x}{2}-\frac{π}{3})$的圖象,只需將函數(shù)$y=cos\frac{x}{2}$的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{2π}{3}$個單位D.向右平移$\frac{2π}{3}$個單位

查看答案和解析>>

同步練習(xí)冊答案