欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.為得到函數(shù)$y=sin(3x+\frac{π}{4})$的圖象,只要把函數(shù)$y=sin(x+\frac{π}{4})$圖象上所有的點(diǎn)( 。
A.橫坐標(biāo)縮短到原來的$\frac{1}{3}$倍,縱坐標(biāo)不變
B.橫坐標(biāo)伸長(zhǎng)到原來的3倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長(zhǎng)到原來的3倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮短到原來的$\frac{1}{3}$倍,橫坐標(biāo)不變

分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:把函數(shù)$y=sin(x+\frac{π}{4})$圖象上所有的點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{3}$倍,縱坐標(biāo)不變,
可得函數(shù)$y=sin(3x+\frac{π}{4})$的圖象,
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義:曲線C上的點(diǎn)到點(diǎn)P的距離的最小值稱為曲線C到點(diǎn)P的距離.已知圓C:x2+y2-2x-2y-6=0到點(diǎn)P(a,a)的距離為$\sqrt{2}$,則實(shí)數(shù)a的值為-2,0,2或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若F1,F(xiàn)2是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>2b>0)的兩個(gè)焦點(diǎn),分別過F1,F(xiàn)2作傾斜角為45°的兩條直線與橢圓相交于四點(diǎn),以該四點(diǎn)為頂點(diǎn)的四邊形和一橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積比等于$\frac{2\sqrt{2}}{3}$,求該橢圓的離心率(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{OA}$=(2,2),$\overrightarrow{OB}$=(4,1),點(diǎn)P在x軸上,則$\overrightarrow{AP}$•$\overrightarrow{BP}$取最小值時(shí)P點(diǎn)坐標(biāo)是( 。
A.(-3,0)B.(1,0)C.(2,0)D.(3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x)=-lnx+ax2+bx-a-2b有兩個(gè)極值點(diǎn)x1,x2,其中-$\frac{1}{2}<a<0$,b>0,且f(x2)=x2>x1,則方程2a[f(x)]2+bf(x)-1=0的實(shí)根個(gè)數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0\end{array}\right.$,則x-3y的最小值為-4,點(diǎn)P(x,y)所組成的平面區(qū)域的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線y=$\frac{1}{4}$x2的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x2-ax的圖象在點(diǎn)A(1,f(1))處的切線與直線x+3y+2=0垂直.執(zhí)行如圖所示的程序框圖,輸出的k值是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a,b∈R,a2-2ab+5b2=4,則ab的最小值為$\frac{1-\sqrt{5}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案