【題目】如圖,在四棱錐
中,底面
是邊長為
的正方形,
.
(1)求證:
;
(2)若
分別為
的中點,
平面
,求直線
與平面
所成角的大。
![]()
【答案】(1)詳見解析;(2)
.
【解析】試題分析:本題主要考查線面垂直的判定與性質(zhì)、二面角的求解等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、空間想象能力、邏輯推理能力、計算能力.第一問,利用線面垂直的判定定理,先證出
平面
,利用線面垂直的性質(zhì)定理得
,在
中再證明
;第二問,先證明
兩兩垂直,從而建立空間直角坐標(biāo)系,求出平面
的法向量,再求直線
與平面
所成角的正弦值,最后確定角.
試題解析:(1)連接
,
,
,
交于點
,
因為底面
是正方形,
所以
且
為
的中點.
又![]()
所以
平面
,
由于
平面
,故![]()
.
又
,故
.
![]()
解法1:
![]()
設(shè)
的中點為
,連接
,
∥=
,
所以
為平行四邊形,
∥
,
因為
平面
,
所以
平面
,
所以
,
的中點為
,
所以
.
由
平面
,又可得
,
又
,又![]()
所以
平面![]()
所以
,又
,
所以
平面![]()
(注意:沒有證明出
平面
,直接運用這一結(jié)論的,后續(xù)過程不給分)
由題意,
兩兩垂直, ,以
為坐標(biāo)原點,向量
的方向為
軸
軸
軸的正方向建立如圖所示的空間直角坐標(biāo)系
,則
![]()
![]()
為平面
的一個法向量.
設(shè)直線
與平面
所成角為
,
![]()
所以直線
與平面
所成角為
.
解法2:設(shè)
的中點為
,連接
,則
∥=
,
![]()
所以
為平行四邊形,
∥
,
因為
平面
,
所以
平面
,
所以
,
的中點為
,所以
.
同理
,又
,又![]()
所以
平面![]()
所以
,又
,
所以
平面![]()
連接
、
,設(shè)交點為
,連接
,設(shè)
的中點為
,連接
,
則在三角形
中,
∥
,所以
平面
,
又在三角形
中,
∥
,
所以
即為直線
與平面
所成的角.
又
,
,
所以在直角三角形
中,
,
所以
,直線
與平面
所成的角為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點為
,原點為
,橢圓
的動弦
過焦點
且不垂直于坐標(biāo)軸,弦
的中點為
,過
且垂直于線段
的直線交射線
于點
.
(1)證明:點
在定直線上;
(2)當(dāng)
最大時,求
的面積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)求函數(shù)
的零點個數(shù);
(Ⅱ)證明:
是函數(shù)
存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在原點,離心率為
,右焦點到直線
的距離為2.
(1)求橢圓
的方程;
(2)橢圓下頂點為
,直線
(
)與橢圓相交于不同的兩點
,當(dāng)
時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某班的50名學(xué)生進行不記名問卷調(diào)查,內(nèi)容為本周使用手機的時間長,如表:
時間長(小時) |
|
|
|
|
|
女生人數(shù) | 4 | 11 | 3 | 2 | 0 |
男生人數(shù) | 3 | 17 | 6 | 3 | 1 |
(1)求這50名學(xué)生本周使用手機的平均時間長;
(2)時間長為
的7名同學(xué)中,從中抽取兩名,求其中恰有一個女生的概率;
(3)若時間長為
被認(rèn)定“不依賴手機”,
被認(rèn)定“依賴手機”,根據(jù)以上數(shù)據(jù)完成
列聯(lián)表:
不依賴手機 | 依賴手機 | 總計 | |
女生 | |||
男生 | |||
總計 |
能否在犯錯概率不超過0.15的前提下,認(rèn)為學(xué)生的性別與依賴手機有關(guān)系?
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐
,
平面
,底面
為直角梯形,
,
,
,
,
是
中點.
![]()
(1)求證:
平面
;
(2)若直線
與平面
所成角的正切值為
,
是
的中點,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若曲線
與曲線
在公共點處有共同的切線,求實數(shù)
的值;
(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)
是否有零點?如果有,求出該零點;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖2,在三棱錐A-BCD中,AB=CD=4, AC=BC=AD=BD=3.
(I)證明:AB
CD;
(II) E在線段BC上,BE=2EC, F是線段AC的中點,求平面ADE與平面BFD所成銳二面角的余弦值
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:
=1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線l:y=-x+3與橢圓E有且只有一個公共點T.
(1)求橢圓E的方程及點T的坐標(biāo);
(2)設(shè)O是坐標(biāo)原點,直線l'平行于OT,與橢圓E交于不同的兩點A,B,且與直線l交于點P,證明:存在常數(shù)λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com