分析 畫出滿足條件的平面區(qū)域,求出角點的坐標(biāo),結(jié)合目標(biāo)函數(shù)的幾何意義求出z的最大值即可.
解答
解:畫出滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{3x-y-5≥0}\end{array}\right.$的平面區(qū)域,如圖示:
由$\left\{\begin{array}{l}{x-y+1=0}\\{3x-y-5=0}\end{array}\right.$,解得:A(3,4),
z=$\frac{y+1}{2x}$的幾何意義是可行域內(nèi)的點與(0,-1)連線的斜率的一半,由題意可知可行域的A與(0,-1)連線的斜率最大.
∴z=$\frac{y+1}{2x}$的最大值是:$\frac{5}{6}$,
故答案為:$\frac{5}{6}$.
點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 小于0 | B. | 等于0 | C. | 大于0 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [-1,3] | B. | [1,3] | C. | [1,2] | D. | (-∞,3] |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com