【題目】在平面直角坐標(biāo)系
中,對(duì)于點(diǎn)
,若函數(shù)
滿足:
,都有
,就稱這個(gè)函數(shù)是點(diǎn)
的“限定函數(shù)”.以下函數(shù):①
,②
,③
,④
,其中是原點(diǎn)
的“限定函數(shù)”的序號(hào)是______.已知點(diǎn)
在函數(shù)
的圖象上,若函數(shù)
是點(diǎn)
的“限定函數(shù)”,則
的取值范圍是______.
【答案】①③
【解析】
分別運(yùn)用一次函數(shù)、二次函數(shù)和正弦函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,結(jié)合集合的包含關(guān)系可判斷是否是原點(diǎn)的限定函數(shù);由指數(shù)函數(shù)的單調(diào)性,結(jié)合集合的包含關(guān)系,解不等式可得a的范圍.
要判斷是否是原點(diǎn)O的“限定函數(shù)”只要判斷:
,都有
,
對(duì)于①
,由
可得
,則①是原點(diǎn)O的“限定函數(shù)”;
對(duì)于②
,由
可得
,則②不是原點(diǎn)O的“限定函數(shù)”
對(duì)于③
,由
可得
,則③是原點(diǎn)O的“限定函數(shù)”
對(duì)于④
,由
可得![]()
![]()
,則④不是原點(diǎn)O的“限定函數(shù)”
點(diǎn)
在函數(shù)
的圖像上,若函數(shù)
是點(diǎn)A的“限定函數(shù)”,可得
,
由
,即
,
即
,可得
,
可得
,且
,即
的范圍是
,
故答案為:①③;
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機(jī)遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為
萬元, 每生產(chǎn)
臺(tái),需另投入成本
(萬元), 當(dāng)年產(chǎn)量不足
臺(tái)時(shí),
(萬元); 當(dāng)年產(chǎn)量不小于
臺(tái)時(shí)
(萬元), 若每臺(tái)設(shè)備售價(jià)為
萬元, 通過市場(chǎng)分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤(rùn)
(萬元)關(guān)于年產(chǎn)量
(臺(tái))的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺(tái)時(shí) ,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,底面
是等腰梯形,
,
是等邊三角形,點(diǎn)
在
上.且
.
(I)證明:
平面
;
(Ⅱ)若平面
⊥平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡(jiǎn)稱“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為
(
,且
);選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列推理正確的是( )
A. 每場(chǎng)比賽第一名得分
為4 B. 甲可能有一場(chǎng)比賽獲得第二名
C. 乙有四場(chǎng)比賽獲得第三名 D. 丙可能有一場(chǎng)比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:①“若
,則
,
互為倒數(shù)”的逆命題;②“面積相等的三角形全等”的否命題;③“若
,則
有實(shí)數(shù)解”的逆否命題;④“若
,則
”的逆否命題.其中真命題為________(填寫所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)
為偶函數(shù).
(1)求
的解析式;
(2)若函數(shù)
在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)曲線
在點(diǎn)
處的切線垂直于直線
:
,求
的值;
(2)討論函數(shù)
零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年雙11當(dāng)天,某購物平臺(tái)的銷售業(yè)績(jī)高達(dá)2135億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.
(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品好評(píng) | 140 | ||
對(duì)商品不滿意 | 10 | ||
合計(jì) | 200 |
(2)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的3次購物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為X.
①求隨機(jī)變量X的分布列;
②求X的數(shù)學(xué)期望和方差.
附:
,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com