已知函數(shù)f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導(dǎo)函數(shù).
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關(guān)于x的方程f(x)=|f′(x)|;
(3)設(shè)函數(shù)g(x)=
,求g(x)在x∈[2,4]時(shí)的最小值.
解 (1)因?yàn)?i>f(x)≤f′(x),所以x2-2x+1≤2a(1-x),
又因?yàn)椋?≤x≤-1,
所以a≥
max在x∈[-2,-1]時(shí)恒成立,因?yàn)?img src='http://thumb.zyjl.cn/pic1/files/down/test/2014/05/30/21/2014053021402639653183.files/image037.jpg'>≤
,
所以a≥
.
(4分)
(2)因?yàn)?i>f(x)=|f′(x)|,所以x2+2ax+1=2|x+a|,
所以(x+a)2-2|x+a|+1-a2=0,則|x+a|=1+a或|x+a|=1-a.(7分)
①當(dāng)a<-1時(shí),|x+a|=1-a,所以x=-1或x=1-2a;
②當(dāng)-1≤a≤1時(shí),|x+a|=1-a或|x+a|=1+a,
所以x=±1或x=1-2a或x
=-(1+2a);
③當(dāng)a>1時(shí),|x+a|=1+a,所以x=1或x=-(1+2a).(10分)
(3)因?yàn)?i>f(x)-f′(x)=(x-1)[x-(1-2a)],g(x)=![]()
①若a≥-
,則x∈[2,4]時(shí),f(x)≥f′(x),所以g(x)=f′(x)=2x+2a,
從而g(x)的最小值為g(2)=2a+4;(
12分)
②若 a<-
,則x∈[2,4]時(shí),f(x)<f′(x),所以g(x)=f(x)=x2+2ax+1,
當(dāng)-2≤a<-
時(shí),g(x)的最小值為g(2)=4a+5,
當(dāng)-4<a<-2時(shí),g(x)的最小值為g(-a)=1-a2,
當(dāng)a≤-4時(shí),g(x)的最小值為g(4)=8a+17.(14分)
③若-
≤a<-
,則x∈[2,4]時(shí),
g(x)=![]()
當(dāng)x∈[2,1-2a)時(shí),g(x)最小值為g(2)=4a+5;
當(dāng)x∈[1-2a,4]時(shí),g(x)最小值為g(1-2a)=2-2a.
因?yàn)椋?sub>
≤a<-
,(4a+5)-(2-2a)=6a+3<0,
所以g(x)最小值為4a+5,
綜上所述,
[g(x)]min=![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出
名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)
這一組的頻數(shù)、頻率分別是
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(
分及以上為及格)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)
,且函數(shù)
的最小正周期為
。
(I)求函數(shù)
的解析式;
(II)在
中,角A,B,C所對(duì)的邊分別為a,b,c,若
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)數(shù)列{bn}滿足bn+2=-bn+1-bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2+n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-
,若存在實(shí)數(shù)p,q,對(duì)任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,試求q-p的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且c=2,C=60°.
(1)求
的值;
(2)若a+b=ab,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
下列有關(guān)命題的說(shuō)法正確的是( )
A.命題“若x2 =4,則x=2”的否命題為:“若x2 =4,則x≠2”
B.“x=2”是“x2—6x+8=0”的必要不充分條件
C.命題“若x=y,則cosx=cosy”的逆否命題為真命題
D.命題“存在x∈R,使得x2+x+3>0”的否定是:“對(duì)于任意的x∈R,均有
x2 +x+3<0"
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知
與
是互相垂直的異面直線,
在平面
內(nèi),
∥
,平面
內(nèi)的動(dòng)點(diǎn)P到
與
的距離相等,則點(diǎn)P的軌跡是( )
A.圓 B.橢圓 C.雙曲線 D.拋物線
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com