【題目】閱讀材料:空間直角坐標系O﹣xyz中,過點P(x0,y0,z0)且一個法向量為
=(a,b,c)的平面α的方程為a(x﹣x0)+b(y﹣y0)+c(z﹣z0)=0;過點P(x0,y0,z0)且一個方向向量為
=(u,v,w)(uvw≠0)的直線l的方程為
,閱讀上面材料,并解決下面問題:已知平面α的方程為x+2y﹣2z﹣4=0,直線l是兩平面3x﹣2y﹣7=0與2y﹣z+6=0的交線,則直線l與平面α所成角的大小為( 。
A. arcsin
B. arcsin![]()
C. arcsin
D. arcsin![]()
科目:高中數(shù)學 來源: 題型:
【題目】某大學為了更好提升學校文化品位,發(fā)揮校園文化的教育功能特舉辦了校園文化建設方案征集大賽,經(jīng)評委會初評,有兩個優(yōu)秀方案入選.為了更好充分體現(xiàn)師生的主人翁意識,組委會邀請了100名師生代表對這兩個方案進行登記評價(登記從高到低依次為
),評價結果對應的人數(shù)統(tǒng)計如下表:
編號 | 等級 | ||||
|
|
|
|
| |
1號方案 | 8 | 41 | 26 | 15 | 10 |
2號方案 | 7 | 33 | 20 | 20 | 20 |
(Ⅰ)若從對1號方案評價為
的師生中任選3人,求這3人中至少有1人對1號方案評價為
的概率;
(Ⅱ)在
級以上(含
級),可獲得2萬元的獎勵,
級獎勵
萬元,
級無獎勵.若以此表格數(shù)據(jù)估計概率,隨機請1名師生分別對兩個方案進行獨立評價,求兩個方案獲得的獎勵總金額
(單位:萬元)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解社會對學校辦學質(zhì)量的滿意程度,某學校決定用分層抽樣的方法從高中三個年級的家長委員會中共抽取
人進行問卷調(diào)查,已知高一、高二、高三、的家長委員會分別有
人,
人,
人.
求從三個年級的家長委員會分別應抽到的家長人數(shù);
若從抽到的
人中隨機抽取
人進行調(diào)查結果的對比,求這
人中至少有一人是高三學生家長的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線
的漸近線方程為
,拋物線
:
的焦點
與雙曲線
的右焦點重合,過
的直線
交拋物線
于
兩點,
為坐標原點,若向量
與
的夾角為
,則
的面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失敗.
![]()
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
(1)求圖中
的值;
(2)根據(jù)已知條件完成下面
列聯(lián)表,并判斷能否有
的把握認為“晉級成功”與性別有關?
(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為
,求
的分布列與數(shù)學期望
.
(參考公式:
,其中
)
| 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線
與
有相同的漸近線,且經(jīng)過點
,
(1)求雙曲線
的方程,并寫出其離心率與漸近線方程;
(2)已知直線
與雙曲線
交于不同的兩點
,且線段
的中點在圓
上,求實數(shù)
的取值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】商店出售茶壺和茶杯,茶壺定價每個20元,茶杯每個5元,該商店推出兩種優(yōu)惠辦法:(1)買一個茶壺贈一個茶杯;(2)按總價的92%付款.
某顧客需購買茶壺4個,茶杯若干個(不少于4個),若購買茶杯數(shù)x個,付款y(元),分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關系式,并討論該顧客買同樣多的茶杯時,兩種辦法哪一種更優(yōu)惠。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
是定義在
上的偶函數(shù),當
時,![]()
![]()
(1)在給定的坐標系中畫出函數(shù)
在
上的圖像(不用列表);并直接寫出
的單調(diào)區(qū)間;
(2)當
時,求
的解析式.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com