【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會(huì)審議,草案對“生活垃圾污染環(huán)境的防治”進(jìn)行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認(rèn)識,某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類網(wǎng)絡(luò)知識問卷調(diào)查,每一位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:
得分 |
|
|
|
|
|
|
|
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認(rèn)為,此次問卷調(diào)查的得分
服從正態(tài)分布
,
近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請利用正態(tài)分布的知識求
;
(2)在(1)的條件下,市環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
①得分不低于
的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于
的可以獲贈(zèng)1次隨機(jī)話費(fèi);
②每次獲贈(zèng)的隨機(jī)話費(fèi)和對應(yīng)的概率為:
獲贈(zèng)的隨機(jī)話費(fèi)(單位:元) | 20 | 40 |
概率 |
|
|
現(xiàn)市民小王要參加此次問卷調(diào)查,記
(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求
的分布列及數(shù)學(xué)期望.
附:①
;
②若
,則
,
,
.
【答案】(1)0.8186;
(2)分布列見解析,
.
【解析】
(1)先求出
,再根據(jù)正態(tài)分布的知識求出
即可;(2)先求出
的所有可能情況20,40,60,80元,再求
的分布列及數(shù)學(xué)期望即可.
(1)根據(jù)題中所給的統(tǒng)計(jì)表,結(jié)合題中所給的條件,可以求得
![]()
![]()
.
又
,
,
所以
.
(2)根據(jù)題意,可以得出所得話費(fèi)的可能值有20,40,60,80元,
得20元的情況為低于平均值,概率
,
得40元的情況有一次機(jī)會(huì)獲40元,2次機(jī)會(huì)2個(gè)20元,概率
,
得60元的情況為兩次機(jī)會(huì),一次40元一次20元,概率
,
得80元的其概況為兩次機(jī)會(huì),都是40元,概率為
.
所以變量
的分布列為:
| 20 | 40 | 60 | 80 |
|
|
|
|
|
所以其期望為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
,圓
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求
的極坐標(biāo)方程;
(2)若直線
的極坐標(biāo)方程為
,設(shè)
的交點(diǎn)為A,B,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)
滿足
且
,當(dāng)
時(shí),
,關(guān)于
的不等式
在
上有且只有200個(gè)整數(shù)解,則實(shí)數(shù)
的取值范圍為( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;
(I)求函數(shù)f(x)的極值;
(II)當(dāng)
恒成立時(shí),求實(shí)數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
都是由實(shí)數(shù)組成的無窮數(shù)列.
(1)若
都是等差數(shù)列,判斷數(shù)列
是否是等差數(shù)列,說明理由;
(2)若
,且
是等比數(shù)列,求
的所有可能值;
(3)若
都是等差數(shù)列,數(shù)列
滿足
,求證:
是等差數(shù)列的充要條件是:
中至少有一個(gè)是常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
為橢圓上一動(dòng)點(diǎn),當(dāng)
的面積最大時(shí),其內(nèi)切圓半徑為
,設(shè)過點(diǎn)
的直線
被橢圓
截得線段
,
當(dāng)
軸時(shí),
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
為橢圓
的左頂點(diǎn),
是橢圓上異于左、右頂點(diǎn)的兩點(diǎn),設(shè)直線
的斜率分別為
,若
,試問直線
是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知美國蘋果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需要另外投入16美元,設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)
萬部并全部銷售完,每萬部的銷售收入為
萬元,且
.
(1)寫出年利潤
(萬元)關(guān)于年產(chǎn)量
(萬部)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬部時(shí),蘋果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com