【題目】已知函數(shù)
(![]()
R).
(1) 若
,求函數(shù)
的極值;
(2)是否存在實(shí)數(shù)
使得函數(shù)
在區(qū)間
上有兩個(gè)零點(diǎn),若存在,求出
的取值范圍;若不存在,說(shuō)明理由。
【答案】(1)
,
(2)存在實(shí)數(shù)
,當(dāng)
時(shí),函數(shù)
在區(qū)間
上有兩個(gè)零點(diǎn)
【解析】試題分析:(1)
2分
,
|
|
| 1 |
| |
| - | 0 | + | 0 | - |
| 遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
/span>4分
,
6分
(2)
, ![]()
,
8分
① 當(dāng)
時(shí),
在
上為增函數(shù),在
上為減函數(shù),
,
,
,所以
在區(qū)間
,
上各有一個(gè)零點(diǎn),即在
上有兩個(gè)零點(diǎn); 10分
②當(dāng)
時(shí),
在
上為增函數(shù),在
上為減函數(shù),
上為增函數(shù),
,
,
,
,所以
只在區(qū)間
上有一個(gè)零點(diǎn),故在
上只有一個(gè)零點(diǎn); 12分
③ 當(dāng)
時(shí),
在
上為增函數(shù),在
上為減函數(shù),
上為增函數(shù),
,
,
,
, 所以
只在區(qū)間
上有一個(gè)零點(diǎn),故在
上只有一個(gè)零點(diǎn); 13分
故存在實(shí)數(shù)
,當(dāng)
時(shí),函數(shù)
在區(qū)間
上有兩個(gè)零點(diǎn)14分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義滿足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且
∈A(b≠0)”的集合A為“閉集”.試問(wèn)數(shù)集N,Z,Q,R是否分別為“閉集”?若是,請(qǐng)說(shuō)明理由;若不是,請(qǐng)舉反例說(shuō)明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
是長(zhǎng)方形,側(cè)棱
底面
,且
,過(guò)D作
于F,過(guò)F作
交 PC于E.
(Ⅰ)證明:
平面PBC;
(Ⅱ)求平面
與平面
所成二面角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推動(dòng)乒乓球運(yùn)動(dòng)的發(fā)展,某乒乓球比賽允許不同協(xié)會(huì)的運(yùn)動(dòng)員組隊(duì)參加.現(xiàn)有來(lái)自甲協(xié)會(huì)的運(yùn)動(dòng)員
名,其中種子選手
名;乙協(xié)會(huì)的運(yùn)動(dòng)員
名,其中種子選手
名.從這
名運(yùn)動(dòng)員中隨機(jī)選擇
人參加比賽.
(1)設(shè)
為事件“選出的
人中恰有
名種子選手,且這
名種子選手來(lái)自同一個(gè)協(xié)會(huì)”求事件
發(fā)生的概率;
(2)設(shè)
為選出的
人中種子選手的人數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
,AD=CD=1.
![]()
(1)求證:BD⊥AA1.
(2)在棱BC上取一點(diǎn)E,使得AE∥平面DCC1D1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)設(shè)a=2,函數(shù)f(x)的定義域?yàn)?/span>[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)是城市慢行系統(tǒng)的一種模式創(chuàng)新,對(duì)于解決民眾出行“最后一公里”的問(wèn)題特別見(jiàn)效,由于停取方便、租用價(jià)格低廉,各色共享單車(chē)受到人們的熱捧.某自行車(chē)廠為共享單車(chē)公司生產(chǎn)新樣式的單車(chē),已知生產(chǎn)新樣式單車(chē)的固定成本為20000元,每生產(chǎn)一件新樣式單車(chē)需要增加投入100元.根據(jù)初步測(cè)算,自行車(chē)廠的總收益(單位:元)滿足分段函數(shù)
,其中
是新樣式單車(chē)的月產(chǎn)量(單位:件),利潤(rùn)
總收益
總成本.
(1)試將自行車(chē)廠的利潤(rùn)
元表示為月產(chǎn)量
的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車(chē)廠的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的
,
,
,
四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是
或
作品獲得一等獎(jiǎng)”;
乙說(shuō):“
作品獲得一等獎(jiǎng)”;
丙說(shuō):“
,
兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是
作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
sinωx·cosωx-cos2ωx(ω>0)的最小正周期為
.
(1)求ω的值;
(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時(shí)f(A)的值域.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com