已知兩點(diǎn)A(-1,2)、B(m,3).
(1)求直線AB的方程;
(2)已知實(shí)數(shù)m∈
,求直線AB的傾斜角α的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l:kx-y+1+2k=0(k∈R)
(1)證明:直線l過(guò)定點(diǎn);
(2)若直線l不經(jīng)過(guò)第四象限,求k的取值范圍;
(3)若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)△AOB的面積為S,求S的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,點(diǎn)
依次滿足
。
(1)求點(diǎn)
的軌跡;
(2)過(guò)點(diǎn)
作直線
交以
為焦點(diǎn)的橢圓于
兩點(diǎn),線段
的中點(diǎn)到
軸的距離為
,且直線
與點(diǎn)
的軌跡相切,求該橢圓的方程;
(3)在(2)的條件下,設(shè)點(diǎn)
的坐標(biāo)為
,是否存在橢圓上的點(diǎn)
及以
為圓心的一個(gè)圓,使得該圓與直線
都相切,如存在,求出
點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切.求:
(1)光線l和反射光線所在的直線方程;
(2)光線自A到切點(diǎn)所經(jīng)過(guò)的路程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l經(jīng)過(guò)點(diǎn)P(3,1),且被兩平行直線l1:x+y+1=0和l2:x+y+6=0截得的線段之長(zhǎng)為5,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直線l經(jīng)過(guò)點(diǎn)(3,2),且在兩坐標(biāo)軸上的截距相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:
=0
(1)已知不過(guò)原點(diǎn)的直線
與圓C相切,且在
軸,
軸上的截距相等,求直線
的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓C截得的線段長(zhǎng)為2的直線方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
直線AM,BM相交于點(diǎn)M,且![]()
(1)求點(diǎn)M的軌跡
的方程;
(2)過(guò)定點(diǎn)(0,
)作直線PQ與曲線C交于P,Q兩點(diǎn),求
的最小值
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com