分析 (1)由AB⊥平面PAD,可得平面PAD⊥平面ABCD,再由已知求得PH⊥AD,由面面垂直的性質(zhì)得到PH⊥平面ABCD;
(2)由(1)可得∠PBH為PB與平面ABCD所成角等于45°,求解直角三角形BAH得到AB,進一步得到CD,求得底面直角梯形的面積,代入棱錐體積公式得答案.
解答
(1)證明:如圖,∵AB⊥平面PAD,AB?平面ABCD,
∴平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
又PD=PA,點H為線段AD的中點,
∴PH⊥AD,則PH⊥平面ABCD;
(2)解:在△PAD中,∵H為線段AD的中點,AD=$\sqrt{2}$,
∴AH=$\frac{\sqrt{2}}{2}$,
由(1)知,PH⊥平面ABCD,
連接BH,則∠PBH為PB與平面ABCD所成角等于45°,
在Rt△PHB中,由∠PBH=45°,得PH=BH=1,
在Rt△BAH中,有AB=$\sqrt{B{H}^{2}-A{H}^{2}}=\sqrt{1-(\frac{\sqrt{2}}{2})^{2}}=\frac{\sqrt{2}}{2}$,
則CD=2AB=$\sqrt{2}$,
∴${S}_{ABCD}=\frac{1}{2}×(\frac{\sqrt{2}}{2}+\sqrt{2})×\sqrt{2}=\frac{3}{2}$,
∴${V}_{P-ABCD}=\frac{1}{3}×{S}_{ABCD}×PH=\frac{1}{3}×\frac{3}{2}×1$=$\frac{1}{2}$.
點評 本題考查直線與平面垂直的判定,考查了面面垂直的性質(zhì),考查了棱錐體積的求法,考查空間想象能力和思維能力,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{\sqrt{6}}{3}$ | B. | 2 | C. | $\frac{\sqrt{6}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{10}$ | B. | $\sqrt{13}$ | C. | $\sqrt{14}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | a>b>c | B. | c>b>a | C. | b>c>a | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com