【題目】如圖,在梯形
中,
,
,四邊形
為矩形,平面
平面
,
.
(I)求證:
平面
;
(II)點(diǎn)
在線段
上運(yùn)動(dòng),設(shè)平面
與平面
所成二面角的平面角為
,
試求
的取值范圍.
![]()
【答案】(1)詳見解析;(2)
.
【解析】
(1)由題意結(jié)合勾股定理和余弦定理可證得BC⊥AC,結(jié)合面面垂直的性質(zhì)定理可得BC⊥平面ACFE.
(2)以CA,CB,CF所在的直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,由題意可得平面MAB的一個(gè)法向量n1=(1,
,
-λ),平面FCB的一個(gè)法向量n2=(1,0,0),則 cosθ=
,結(jié)合三角函數(shù)的性質(zhì)可得cosθ∈[
,
].
(1)在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠ABC=60°,
∴AB=2,∴AC2=AB2+BC2-2AB·BC·cos 60°=3,
∴AB2=AC2+BC2,∴BC⊥AC.
又平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC平面ABCD,
∴BC⊥平面ACFE.
(2)由(1)知,可分別以CA,CB,CF所在的直線為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,
令FM=λ(0≤λ≤
),則C(0,0,0),A(
,0,0),B(0,1,0),M(λ,0,1),
∴
=(-
,1,0),
=(λ,-1,1).
設(shè)n1=(x,y,z)為平面MAB的法向量,
由
,得
,
取x=1,則n1=(1,
,
-λ)為平面MAB的一個(gè)法向量,
易知n2=(1,0,0)是平面FCB的一個(gè)法向量,
∴ cosθ=
.
∵0≤λ≤
, ∴當(dāng)λ=0時(shí),cosθ有最小值
, 當(dāng)λ=
時(shí),cosθ有最大值
,∴cosθ∈[
,
].
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的三棱錐ABC﹣A1B1C1中,AA1⊥底面ABC,D,E分別是BC,A1B1的中點(diǎn). ![]()
(1)求證:DE∥平面ACC1A1;
(2)若AB⊥BC,AB=BC,∠ACB1=60°,求直線BC與平面AB1C所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=3x+2xf′(1),則曲線f(x)在x=0處的切線在x軸上的截距為( )
A.1
B.5ln3
C.﹣5ln3
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程
(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+
)=3
,射線OM:θ=
與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(2,0),半徑為
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.,直線l的參數(shù)方程為:
(t為參數(shù)).
(1)求圓C和直線l的極坐標(biāo)方程;
(2)點(diǎn)P的極坐標(biāo)為(1,
),直線l與圓C相交于A,B,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知指數(shù)函數(shù)
滿足
.又定義域?yàn)閷?shí)數(shù)集R的函數(shù)
是奇函數(shù).
①確定
的解析式;
②求
的值;
③若對(duì)任意的
R,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;
②設(shè)有一個(gè)線性回歸方程
,變量x增加1個(gè)單位時(shí),y平均增加5個(gè)單位;
③設(shè)具有相關(guān)關(guān)系的兩個(gè)變量x,y的相關(guān)系數(shù)為r,則|r|越接近于0,x和y之間的線性相關(guān)程度越強(qiáng);
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2的值,則K2的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大.
以上錯(cuò)誤結(jié)論的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若不等式
恒成立,求實(shí)數(shù)
的最大值;
(2)當(dāng)
時(shí),函數(shù)
有零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)P1,P2,…,P6為單位圓上逆時(shí)針均勻分布的六個(gè)點(diǎn).現(xiàn)任選其中三個(gè)不同點(diǎn)構(gòu)成一個(gè)三角形,記該三角形的面積為隨機(jī)變量S.
(1)求S=
的概率;
(2)求S的分布列及數(shù)學(xué)期望E(S).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com