分析 (1)由已知及余弦定理可解得AC的值,根據三角形面積公式即可得解△ABC的面積.
(2)設∠CAD=θ,則由題意可得:${S_{△ABC}}=A{C^2}×sin2θ$,又${S_{△ABC}}=\frac{3}{2}AC×AD×sinθ$,結合AD=kAC,解得$k=\frac{4}{3}cosθ$,由范圍$θ∈({0,\frac{π}{2}})$即可解得$k∈({0,\frac{4}{3}})$.
解答
解:(1)∵AC2+AB2-BC2=2AC×AB×cosA,
∴5AC2-4=2AC2,即$AC=\frac{{2\sqrt{3}}}{3}$.
所以:${S_{△ABC}}=\frac{1}{2}×AB×AC×sinA=\frac{1}{2}×\frac{{4\sqrt{3}}}{3}×\frac{{2\sqrt{3}}}{3}×\frac{{\sqrt{3}}}{2}=\frac{{2\sqrt{3}}}{3}$.…(7分)
(2)∵設∠CAD=θ,則${S_{△ABC}}=\frac{1}{2}×AB×AC×sin2θ=A{C^2}×sin2θ$,
又∵${S_{△ABC}}=\frac{1}{2}×AB×AD×sinθ+\frac{1}{2}×AC×AD×sinθ=\frac{3}{2}AC×AD×sinθ$,
∴$k=\frac{4}{3}cosθ$,
∵$θ∈({0,\frac{π}{2}})$,
∴$k∈({0,\frac{4}{3}})$.…(15分)
點評 本題主要考查了余弦定理,三角形面積公式,余弦函數的圖象和性質在解三角形中的綜合應用,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\frac{\sqrt{5}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | (-∞,-$\frac{3}{4}$] | B. | [-$\frac{3}{4},0$] | C. | [-2,$\frac{3}{4}$] | D. | [-$\frac{4}{3},1$] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com