【題目】已知函數(shù)
為偶函數(shù),且函數(shù)
圖像的兩相鄰對(duì)稱(chēng)軸間的距離為
.
(1)求
,
及
的值.
(2)將函數(shù)
的圖像向右平移
個(gè)單位,再將得到的圖像上每個(gè)點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的
倍,縱坐標(biāo)不變,得到函數(shù)
的圖像,求
的單調(diào)遞減區(qū)間.
【答案】(1)
,
(2)![]()
【解析】
(1)將將函數(shù)變形為
,利用
是偶函數(shù),則有
求得
,利用函數(shù)
圖像的兩相鄰對(duì)稱(chēng)軸間的距離為
,求得
,進(jìn)而確定函數(shù)
,再求
.
(2)根據(jù)圖象變換,函數(shù)
的圖像向右平移
個(gè)單位,得到
,再將得到的圖像上每個(gè)點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的
倍,縱坐標(biāo)不變,得到
,再求單調(diào)區(qū)間.
(1)![]()
![]()
因?yàn)?/span>
是偶函數(shù)
所以![]()
又因?yàn)?/span>
![]()
又因?yàn)楹瘮?shù)
圖像的兩相鄰對(duì)稱(chēng)軸間的距離為
.
所以
,
所以
所以
,![]()
(2)函數(shù)
的圖像向右平移
個(gè)單位,得到
,
再將得到的圖像上每個(gè)點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的
倍,縱坐標(biāo)不變,
得到![]()
令![]()
解得![]()
所以
的單調(diào)遞減區(qū)間是![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左,右焦點(diǎn)分別為
,
,離心率為
,
是橢圓
上的動(dòng)點(diǎn),當(dāng)
時(shí),
的面積為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)
的直線(xiàn)交橢圓
于
,
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中;
(1)BM與ED平行;(2)CN與BE是異面直線(xiàn);(3)CN與BM所成角為60°;(4)CN與AF垂直. 以上四個(gè)命題中,正確命題的序號(hào)是( )
![]()
A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+θ),其中ω>0,θ∈(0,
),
=
=0,(x1≠x2),|x2-x1|min=
,f(x)=f(
-x),將函數(shù)f(x)的圖象向左平移
個(gè)單位長(zhǎng)度得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是
A. [kπ-
,kπ+
](k∈Z) B. [kπ,kπ+
](k∈Z)
C. [kπ+
,kπ+
](k∈Z) D. [kπ+
,kπ+
](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一片森林原面積為
,計(jì)劃從某年開(kāi)始,每年砍伐一些樹(shù)林,且每年砍伐面積與上一年剩余面積的百分比相等.并計(jì)劃砍伐到原面積的一半時(shí),所用時(shí)間是10年.為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的
.已知到今年為止,森林剩余面積為原面積的
.
(1)求每年砍伐面積與上一年剩余面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)為保護(hù)生態(tài)環(huán)境,今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A
恒過(guò)點(diǎn)
,且與直線(xiàn)
:
相切.
(1)求動(dòng)圓圓心
的軌跡
的方程;
(2)探究在曲線(xiàn)
上,是否存在異于原點(diǎn)的兩點(diǎn)
,
,當(dāng)
時(shí),直線(xiàn)
恒過(guò)定點(diǎn)?若存在,求出該定點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若直角三角形兩直角邊長(zhǎng)之和為12,求其周長(zhǎng)
的最小值;
(2)若三角形有一個(gè)內(nèi)角為
,周長(zhǎng)為定值
,求面積
的最大值;
(3)為了研究邊長(zhǎng)
滿(mǎn)足
的三角形其面積是否存在最大值,現(xiàn)有解法如下:
(其中
, 三角形面積的海倫公式),
∴![]()
![]()
,
而
,
,
,則
,
但是,其中等號(hào)成立的條件是
,于是
與
矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請(qǐng)你給出正確的答案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐
中,平面
平面
,
,
點(diǎn)
,
,
分別為線(xiàn)段
,
,
的中點(diǎn),點(diǎn)
是線(xiàn)段
的中點(diǎn).求證:
![]()
(1)
平面
;
(2)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在
上的函數(shù)
,如果滿(mǎn)足;對(duì)任意
,存在常數(shù)
,都有
成立,則稱(chēng)
是
上的有界函數(shù),其中
稱(chēng)為函數(shù)
的上界.已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
在
上的值域,并判斷函數(shù)
在
上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(Ⅱ)若
是
上的有界函數(shù),且
的上界為3,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若
,求函數(shù)
在
上的上界
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com