【題目】已知函數f(x)=(x+1)e-x(e為自然對數的底數).
(1)求函數f(x)的單調區(qū)間;
(2)設函數φ(x)=xf(x)+tf′(x)+e-x,存在實數x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求實數t的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在[-1,1]上的奇函數,在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數f(x)的解析式;并判斷f(x)在[-1,1]上的單調性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的標準方程為
,
為拋物線
上一動點,
(
)為其對稱軸上一點,直線
與拋物線
的另一個交點為
.當
為拋物線
的焦點且直線
與其對稱軸垂直時,
的面積為18.
(1)求拋物線
的標準方程;
(2)記
,若
值與
點位置無關,則稱此時的點
為“穩(wěn)定點”,試求出所有“穩(wěn)定點”,若沒有,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地隨著經濟的發(fā)展,居民收入逐年增長.該地一建設銀行統(tǒng)計連續(xù)五年的儲蓄存款(年底余額)得到下表:
年份 |
|
|
|
|
|
儲蓄存款 (千億元) |
|
|
|
|
|
為便于計算,工作人員將上表的數據進行了處理(令
,
),得到下表:
時間 |
|
|
|
|
|
儲蓄存款 |
|
|
|
|
|
(Ⅰ)求
關于
的線性回歸方程;
(Ⅱ)通過(Ⅰ)中的方程,求出
關于
的回歸方程;
(Ⅲ)用所求回歸方程預測到
年年底,該地儲蓄存款額可達多少?
附:線性回歸方程
,其中
,
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com