欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知tanα=3,分別求下列各式的值:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)sinαcosα;
(3)(sinα+cosα)2;
(4)2sin2α+sinαcosα-3cos2α.

分析 弦化切的思想,分別化簡各式代值計算可得.

解答 解:由題意可得tanα=3,
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{5}{7}$;
(2)sinαcosα=$\frac{sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα}{ta{n}^{2}α+1}$=$\frac{3}{10}$;
(3)(sinα+cosα)2=$\frac{si{n}^{2}α+2sinαcosα+co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{ta{n}^{2}α+2tanα+1}{ta{n}^{2}α+1}$=$\frac{8}{5}$;
(4)2sin2α+sinαcosα-3cos2α
=$\frac{2si{n}^{2}α+sinαcosα-3co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{2ta{n}^{2}α+tanα-3}{ta{n}^{2}α+1}$=$\frac{9}{5}$.

點評 本題考查同角三角函數(shù)基本關系,涉及弦化切的思想,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.對于R上可導的函數(shù)f(x),若a>b>1,且有(x-1)f′(x)>0則必有( 。
A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的圖象經(jīng)過點P($\frac{π}{12}$,0),圖象上與點P最近的一個最高點是Q($\frac{π}{3}$,5)
(1)求函數(shù)的解析式,
(2)畫出這個函數(shù)一個周期內(nèi)的圖象.并求出其遞減區(qū)間,
(3)若存在x∈($\frac{π}{3}$,$\frac{3π}{4}$)使得f(x)=3,求sin2x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.將函數(shù)f(x)=cos(x+$\frac{π}{3}$)的圖象上點的橫坐標伸長到原來的2倍,得到的圖象的一個對稱中心是(  )
A.($\frac{π}{3}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{2}$,0)D.(-$\frac{π}{3}$,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在數(shù)列{an}中,an>0,a1=$\frac{1}{2}$,如果an+1是1與$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中項,那么a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+$\frac{{a}_{4}}{{4}^{2}}$+…+$\frac{{a}_{100}}{10{0}^{2}}$的值是$\frac{100}{101}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.直線l:2x-3y+1=0,求直線m:3x-2y-6=0關于直線1的對稱直線m′的一般方程9x-46y+102=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=$\left\{\begin{array}{l}{2x+3a,x<2}\\{-x-a,x≥2}\end{array}\right.$若f(2-a)=f(2+a)(a≠0),則a的值為$-\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知α為銳角,cos(α+$\frac{π}{4}$)=-$\frac{4}{5}$,則sin(α-$\frac{π}{4}$)=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設函數(shù)f(x)=$\left\{\begin{array}{l}{2x-1,x<1}\\{\frac{1}{x},x≥1}\end{array}\right.$則f(f(2))=(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步練習冊答案