【題目】已知以點(diǎn)
為圓心的圓過原點(diǎn)O,與x軸另一個(gè)交點(diǎn)為M,與y軸另一個(gè)交點(diǎn)為N,
(1)求證:△MON的面積為定值;
(2)直線4x+ y-4=0與圓C交于點(diǎn)A、B,若
,求圓C的方程
(3)若直線l:x+ y -5=0和圓C交于點(diǎn)A,B兩點(diǎn),且AB=
,求圓心C的坐標(biāo)。
【答案】(1)證明見解析;(2)
;(3)(1,2)或(2,1).
【解析】
試題分析:(1)關(guān)鍵是求出
的面積,首先寫出圓
的方程
,可化簡后分別令
和
求得
的坐標(biāo),從而得
的面積;(2)由
,知
在
的中垂線上,從而
,因此可得
斜率,由此可得
,得圓
方程;(3)已知直線與圓相交弦長,可由垂徑定理求得弦長,即先求得圓心
到直線
的距離
,由勾股定列出關(guān)于
的方程,解得可得圓心坐標(biāo).
試題解析:(1)由題設(shè)知,圓C的方程為
,化簡得
,當(dāng)y=0時(shí),x=0或2t,則
;當(dāng)x=0時(shí),y=0或
,則
, ∴
為定值
(2)∵
,則原點(diǎn)O在AB的中垂線上,設(shè)AB的中點(diǎn)為H,則CH⊥AB,∴C、H、O三點(diǎn)共線,則直線OC的斜率
,∴t=2
(負(fù)舍)
∴圓心C(2
,
)∴圓C的方程為
(3)d=
,r=
,弦長為
,列出方程:
,令
,方程可化為
,解得
m=3或-13(舍),則t=1或2,所以圓心C(1,2)或(2,1).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖(b)所示.
![]()
(1)求證:BC⊥平面ACD;
(2)求幾何體D-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貨輪勻速行駛在相距
海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其他費(fèi)用組成.已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為
),其他費(fèi)用為每小時(shí)
元,且該貨輪的最大航行速度為
海里/小時(shí).
(1)請將從甲地到乙地的運(yùn)輸成本
(元)表示為航行速度
(海里/小時(shí))的函數(shù);
(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的方程是
,圓
的參數(shù)方程是
(
為參數(shù)).以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別求直線
與圓
的極坐標(biāo)方程;
(2)射線
:
(
)與圓
的交點(diǎn)為
、
兩點(diǎn),與直線
交于點(diǎn)
,射線
:
與圓
交于
,
兩點(diǎn),與直線
交于點(diǎn)
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求過直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點(diǎn),且到點(diǎn)P(0,4)的距離為2的直線方程.
(2)設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).若l在兩坐標(biāo)軸上的截距相等,求l的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩數(shù)字游戲,先由甲任想一個(gè)數(shù)字記為
,再由乙猜甲剛才想的數(shù)字把乙想的數(shù)字記為
,且
,
,記
.
(1)求
的概率;
(2)若
,則稱“甲乙心有靈犀”,求“甲乙心有靈犀”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知c>0,設(shè)命題p:函數(shù)
為減函數(shù).命題q:當(dāng)
時(shí),函數(shù)f(x)=x+
>
恒成立.如果“p∨q”為真命題,“p∧q”為假命題,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下說法正確的是( )
A.零向量沒有方向
B.單位向量都相等
C.共線向量又叫平行向量
D.任何向量的模都是正實(shí)數(shù)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com