【題目】在平面直角坐標(biāo)系
中,已知定點(diǎn)
,點(diǎn)
在
軸上運(yùn)動(dòng),點(diǎn)
在
軸上運(yùn)動(dòng),點(diǎn)
為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),且滿足
,
.
(1)求動(dòng)點(diǎn)
的軌跡
的方程;
(2)過曲線
第一象限上一點(diǎn)
(其中
)作切線交直線
于點(diǎn)
,連結(jié)
并延長交直線
于點(diǎn)
,求當(dāng)
面積取最小值時(shí)切點(diǎn)
的橫坐標(biāo).
【答案】(1)
;(2)![]()
【解析】
(1)設(shè)點(diǎn)
,
,
,由已知條件推導(dǎo)出點(diǎn)
,
,由此能求出動(dòng)點(diǎn)
的軌跡
的方程;
(2)分別求出切線
與
的方程,求得
,
的縱坐標(biāo),寫出三角形的面積,利用導(dǎo)數(shù)求解當(dāng)△
面積取最小值時(shí)切點(diǎn)
的橫坐標(biāo).
解:(1)設(shè)
,
,
.因?yàn)?/span>
,
,
所以
,
,
,所以
.
(2)![]()
或![]()
或![]()
因?yàn)?/span>
為曲線上第一象限的點(diǎn),則![]()
過
(其中
)作曲線的切線,則切線的斜率![]()
所以切線
:
,將
代入得
,
直線
:
,將
代入得
,
,
因?yàn)?/span>
在拋物線上且在第一象限,所以
,所以
,
設(shè)
,
,
,
,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
,若存在實(shí)數(shù)
,使
成立,則稱
為
的不動(dòng)點(diǎn).
(1)當(dāng)
,
時(shí),求
的不動(dòng)點(diǎn);
(2)若對于任何實(shí)數(shù)
,函數(shù)
恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)在(2)的條件下,若
的圖象上
、
兩點(diǎn)的橫坐標(biāo)是函數(shù)
的不動(dòng)點(diǎn),且直線
是線段
的垂直平分線,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
x3(a>0,且a≠1).
(1)討論f(x)的奇偶性;
(2)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
在圓
上,點(diǎn)在圓
上,則下列說法錯(cuò)誤的是
A.
的取值范圍為![]()
B.
取值范圍為![]()
C.
的取值范圍為![]()
D. 若
,則實(shí)數(shù)
的取值范圍為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)若函數(shù)
在區(qū)間
上存在極值,求實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)
,對任意
恒有
,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:
相切的直線l交橢圓C于A,B兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求△AOB面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
,直線l與橢圓C交于P,Q兩點(diǎn),且點(diǎn)M滿足
.
(1)若點(diǎn)
,求直線
的方程;
(2)若直線l過點(diǎn)
且不與x軸重合,過點(diǎn)M作垂直于l的直線
與y軸交于點(diǎn)
,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱
中,
,側(cè)面
是邊長為4的菱形,
,
,
、
分別為
、
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)若
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,
平面PCD,
,
,
,E為AD的中點(diǎn),AC與BE相交于點(diǎn)O.
![]()
(1)證明:
平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com