已知函數(shù)f(x)=ax+ln x,g(x)=ex.
(1)當(dāng)a≤0時,求f(x)的單調(diào)區(qū)間;
(2)若不等式g(x)<
有解,求實(shí)數(shù)m的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
,
(1)當(dāng)
時,求曲線
在點(diǎn)
處的切線方程;
(2)討論
的單調(diào)性;
(3)若
有兩個極值點(diǎn)
和
,記過點(diǎn)
的直線的斜率為
,問是否存在
,使得
?若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=axn(1-x)+b(x>0),n為正整數(shù),a,b為常數(shù).曲線y=f(x)在(1,f(1))處的切線方程為x+y=1.
(1)求a,b的值;
(2)求函數(shù)f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
.
(1)函數(shù)f(x)在點(diǎn)(0,f(0))的切線與直線2x+y-1=0平行,求a的值;
(2)當(dāng)x∈[0,2]時,f(x)≥
恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
的極小值;
(2)當(dāng)
時,過坐標(biāo)原點(diǎn)
作曲線
的切線,設(shè)切點(diǎn)為
,求實(shí)數(shù)
的值;
(3)設(shè)定義在
上的函數(shù)
在點(diǎn)
處的切線方程為
當(dāng)
時,若
在
內(nèi)恒成立,則稱
為函數(shù)
的“轉(zhuǎn)點(diǎn)”.當(dāng)
時,試問函數(shù)
是否存在“轉(zhuǎn)點(diǎn)”.若存在,請求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=(x+1)ln x-2x.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f′(x)+
,若h(x)>k(k∈Z)恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中
的函數(shù)圖象在點(diǎn)
處的切線平行于
軸.
(1)確定
與
的關(guān)系; (2)若
,試討論函數(shù)
的單調(diào)性;
(3)設(shè)斜率為
的直線與函數(shù)
的圖象交于兩點(diǎn)
(
)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
,求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)
圖象上任意一點(diǎn)的切線
的斜率為
,當(dāng)
的最小值為1時,求此時切線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
,其中
,
為正整數(shù),
、
、
均為常數(shù),曲線
在
處的切線方程為
.
(1)求
、
、
的值;
(2)求函數(shù)
的最大值;
(3)證明:對任意的
都有
.(
為自然對數(shù)的底)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com