【題目】已知圓C:
,直線l:
.
Ⅰ
求證:直線l與圓C必相交;
Ⅱ
求直線l被圓C截得的弦長最短時直線l的方程以及最短弦長.
【答案】(1)詳見解析;(2)
,
.
【解析】
1
根據(jù)直線l方程得到直線l恒過
,求出
距離小于半徑,即可得到直線l與圓C必相交;
2
當(dāng)直線
直線MC時,直線l被圓C截得的弦長最短,求出直線MC的斜率,根據(jù)兩直線垂直時斜率乘積為
求出直線l斜率,根據(jù)M坐標(biāo)確定出直線l方程,利用垂徑定理,勾股定理求出最短弦長即可.
1
證明:根據(jù)題意得:直線l:
恒過
點,
圓心
,半徑為5,
,
為圓內(nèi),
則直線l與圓C必相交;
2
當(dāng)直線
直線MC時,直線l被圓C截得的弦長最短,
設(shè)直線MC解析式為
,
把M與C坐標(biāo)代入得:
,
解得:
,
,
直線MC解析式為
,
直線l斜率為2,
直線l過點M,
直線l方程為
,即
;
根據(jù)題意得:最短弦長為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求曲線
在點
處的切線方程;
(Ⅱ)求證:當(dāng)
時,
;
(Ⅲ)若
對任意
恒成立,求實數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
所在的平面,
是
的直徑,
是
上一點,且
是
中點,
為
中點.
![]()
(1)求證:
面
;
(2)求證:
面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,且
在
和
處取得極值.
(1)求函數(shù)
的解析式;
(2)設(shè)函數(shù)
,是否存在實數(shù)
,使得曲線
與
軸有兩個交點,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f(x)的圖象如圖所示,則不等式f′(x)f(x)<0的解集為( ) ![]()
A.(1,2)∪(
,3)∪(﹣∞,﹣1)
B.(﹣∞,﹣1)∪(
,3)
C.(﹣∞,﹣1)∪(3,+∞)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù)
2,
,如表所示:
試銷單價 | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量 | 90 | 84 | 83 | 80 | q | 68 |
已知
.
求表格中q的值;
已知變量x,y具有線性相關(guān)性,試?yán)米钚《朔ㄔ,求產(chǎn)品銷量y關(guān)于試銷單價x的線性回歸方程
參考數(shù)據(jù)
;
用
中的回歸方程得到的與
對應(yīng)的產(chǎn)品銷量的估計值記為
2,
,
當(dāng)
時,則稱
為一個“理想數(shù)據(jù)”
試確定銷售單價分別為4,5,6時有哪些是“理想數(shù)據(jù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
(
)的離心率是
,點
在短軸
上,且
。
(1)球橢圓
的方程;
(2)設(shè)
為坐標(biāo)原點,過點
的動直線與橢圓交于
兩點。是否存在常數(shù)
,使得
為定值?若存在,求
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)規(guī)劃時,計劃在周邊建造一片扇形綠地,如圖所示已知扇形綠地的半徑為50米,圓心角
從綠地的圓弧邊界上不同于A,B的一點P處出發(fā)鋪設(shè)兩條道路PO與
均為直線段
,其中PC平行于綠地的邊界
記
其中![]()
![]()
當(dāng)
時,求所需鋪設(shè)的道路長:
若規(guī)劃中,綠地邊界的OC段也需鋪設(shè)道路,且道路的鋪設(shè)費用均為每米100元,當(dāng)
變化時,求鋪路所需費用的最大值
精確到1元
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com