分析 由α的范圍求出α+$\frac{π}{4}$的范圍,利用同角三角函數(shù)間的基本關(guān)系求出cos(α+$\frac{π}{4}$)的值,原式中的角度變形后,利用兩角和與差的正弦函數(shù)公式化簡,將各自的值代入計(jì)算即可求出值.
解答 解:∵α∈($\frac{π}{4}$,$\frac{π}{2}$),sin(α+$\frac{π}{4}$)=$\frac{4}{5}$,
∴α+$\frac{π}{4}$∈($\frac{π}{2}$,$\frac{3π}{4}$),
∴cos(α+$\frac{π}{4}$)=-$\sqrt{1-co{s}^{2}(α+\frac{π}{4})}$=-$\frac{3}{5}$,
則sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{4}{5}×\frac{\sqrt{2}}{2}-(-\frac{3}{5})×\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$.
故答案為:$\frac{7\sqrt{2}}{10}$.
點(diǎn)評 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,+∞) | B. | (1,+∞) | C. | (0,1)∪(1,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com