【題目】設(shè)函數(shù)
.
(Ⅰ)當
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當
時,若函數(shù)
與函數(shù)
的圖像總有兩個交點,設(shè)兩個交點的橫坐標分別為
,
.
①求
的取值范圍;
②求證:
.
【答案】(Ⅰ)當
時,單調(diào)遞增區(qū)間是
;單調(diào)遞減區(qū)間是
.
(Ⅱ)①
,②見解析
【解析】
(Ⅰ)求出函數(shù)
的導數(shù),結(jié)合題中所給的
的條件,令導數(shù)大于零和導數(shù)小于零,分別求出函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間;
(Ⅱ)函數(shù)
與函數(shù)
的圖像總有兩個交點,等價于函數(shù)
有兩個零點,對函數(shù)求導,研究函數(shù)的單調(diào)性,從而求得參數(shù)m的范圍,之后根據(jù)兩個零點的條件,以及函數(shù)圖象的特點,證得結(jié)果.
(Ⅰ)由已知得,
,
由
,
,令
得:
,
令
得,![]()
所以,當
時,單調(diào)遞增區(qū)間是
;單調(diào)遞減區(qū)間是
.
(Ⅱ)令
,
∴
,
①解法一:由
得,
;由
得,
易知,
為
的極大值點.
,
當
時,
;當
時,
.
由題意,只需滿足
,
∴
的取值范圍是:
.
解法二:
,
由
得,
;由
得,
易知,
為極大值點.
而
在
時取得極小值,
由題意,只需滿足
,解得
.
②由題意知,
,
為函數(shù)
的兩個零點,由①知,不妨設(shè)
,則
,且函數(shù)
在
上單調(diào)遞增,
欲證
,只需證明
,而
,
所以,只需證明
.
令
,則![]()
∴![]()
∵
,∴
,即![]()
所以,
,即
在
上為增函數(shù),所以,
,
∴
成立,所以,
.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則:每人從備選的10道題中一次性抽取3道題獨立作答,至少答對2道題即闖關(guān)成功.已知10道備選題中,甲只能答對其中的6道題,乙答對每道題的概率都是
.
(Ⅰ)求甲闖關(guān)成功的概率;
(Ⅱ)設(shè)乙答對題目的個數(shù)為
,求
的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】合肥一中、六中為了加強交流,增進友誼,兩校準備舉行一場足球賽,由合肥一中版畫社的同學設(shè)計一幅矩形宣傳畫,要求畫面面積為
,畫面的上、下各留
空白,左、右各留
空白.
![]()
(1)如何設(shè)計畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?
(2)設(shè)畫面的高與寬的比為
,且
,求
為何值時,宣傳畫所用紙張面積最小?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.
![]()
(1)由折線圖看出,可用線性回歸模型擬合
與
的關(guān)系,請求出相關(guān)系數(shù)(精確到0.01)并加以說明;
(2)建立
關(guān)于
的回歸方程,預測2018年該地區(qū)患“三高”的人數(shù).
參考數(shù)據(jù):
,
,
,
.參考公式:相關(guān)系數(shù)
回歸方程
中斜率和截距的最小二乘法估計公式分別為:![]()
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,C是圓上的點,平面PAC⊥平面ABC,PA⊥AB.
![]()
(1)求證:PA⊥平面ABC;
(2)若PA=AC=2,求點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(
為常數(shù)).
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)是否存在正實數(shù)
,使得對任意
,都有
,若存在,求出實數(shù)
的取值范圍;若不存在,請說明理由;
(Ⅲ)當
時,
,對
恒成立,求整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬元,經(jīng)預測可知,市場對這種產(chǎn)品的年需求量為500件,當出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時,銷售所得的收入約為
(萬元).
(1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤表示為年產(chǎn)量x的函數(shù);
(2)當這種產(chǎn)品的年產(chǎn)量為多少時,當年所得利潤最大?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com