【題目】已知函數(shù)
,且存在不同的實數(shù)x1,x2,x3,使得f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】A
【解析】
作出y=f(x)的函數(shù)圖象,設(shè)x1<x2<x3,f(x1)=f(x2)=f(x3)=t,1<t<2,求得x1,x2,x3,構(gòu)造函數(shù)g(t)=(t﹣1)(2+log2t),1<t<2,求得導(dǎo)數(shù),判斷單調(diào)性,即可得到所求范圍.
函數(shù)
的圖象如圖所示:
![]()
設(shè)x1<x2<x3,
又當(dāng)x∈[2,+∞)時,f(x)=2x﹣2是增函數(shù),
當(dāng)x=3時,f(x)=2,
設(shè)f(x1)=f(x2)=f(x3)=t,1<t<2,
即有﹣x12+2x1+1=﹣x22+2x2+1=
t,
故x1x2x3=(1
)(1
)(2+log2t)
=(t﹣1)(2+log2t),
由g(t)=(t﹣1)(2+log2t),1<t<2,
可得g′(t)=2+log2t
0,即g(t)在(1,2)遞增,又g(1)=0,g(2)=3,
可得g(t)的范圍是(0,3).
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)已知
在
處的切線與
軸垂直,若方程
有三個實數(shù)解
、
、
(
),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對一次性購買2臺機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準(zhǔn)備一次性購買2臺這種機(jī)器,F(xiàn)需決策在購買機(jī)器時應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺數(shù) | 5 | 10 | 20 | 15 |
以這50臺機(jī)器維修次數(shù)的頻率代替1臺機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰梯形ABCD中,
,
,
,O為BE中點,F為BC中點.將
沿BE折起到
的位置,如圖2.
(1)證明:
平面
;
(2)若平面
平面BCDE,求點F到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一改形塔幾何體由若千個正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是( )
![]()
A.8B.7C.6D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)若
,求直線
的普通方程及曲線
的直角坐標(biāo)方程;
(Ⅱ)若直線
與曲線
有兩個不同的交點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點.
![]()
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點坐標(biāo)為
,
,過
垂直于長軸的直線交橢圓于
、
兩點,且
.
![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)過
的直線
與橢圓交于不同的兩點
、
,則
的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com