【題目】如圖1,等腰梯形ABCD中,
,
,
,O為BE中點,F為BC中點.將
沿BE折起到
的位置,如圖2.
(1)證明:
平面
;
(2)若平面
平面BCDE,求點F到平面
的距離.
科目:高中數(shù)學 來源: 題型:
【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元件),在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
![]()
(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價
(單位:元/件,整數(shù))和銷量
(單位:件)
如下表所示:
售價 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù)
,并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;
②根據(jù)所選回歸模型,分析售價
定為多少時?利潤
可以達到最大.
|
|
| |
| 52446.95 | 13142 | 122.89 |
| 124650 | ||
(附:相關(guān)指數(shù)
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).
(1)若
,求曲線
與直線
的兩個交點之間的距離;
(2)若曲線
上的點到直線
距離的最大值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)![]()
.
(1)當
時,求
的單調(diào)區(qū)間;
(2)求函數(shù)
的極值;
(3)若函數(shù)
有兩個零點,求a的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,且存在不同的實數(shù)x1,x2,x3,使得f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( 。
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.
![]()
(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在
的概率:
(2)從參加公益勞動時間
的學生中抽取3人進行面談,記
為抽到高中的人數(shù),求
的分布列;
(3)當
時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點.
![]()
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列
的前
項和為
,
,
.
(1)求數(shù)列
的通項公式;
(2)設(shè)數(shù)列
滿足:
對于任意
,都有
成立.
①求數(shù)列
的通項公式;
②設(shè)數(shù)列
,問:數(shù)列
中是否存在三項,使得它們構(gòu)成等差數(shù)列?若存在,求出這三項;若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com