【題目】如圖,在三棱柱
中,每個(gè)側(cè)面均為正方形,D為底邊AB的中點(diǎn),E為側(cè)棱
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)若
,求三棱錐
的體積.
【答案】(1)見(jiàn)解析
(2)見(jiàn)解析
(3)![]()
【解析】
(1)設(shè)
和
的交點(diǎn)為
,根據(jù)
,且
,得到四邊形
為平行四邊形,故
,
平面
.
(2)證明
平面
,可得
平面
,故有
,由正方形的兩對(duì)角線的性質(zhì)可得
,
從而證得
平面
.
(3)利用等體積法將
轉(zhuǎn)化為求
可得.
證明:(1)設(shè)
和
的交點(diǎn)為O,連接EO,連接OD.
![]()
因?yàn)?/span>O為
的中點(diǎn),D為AB的中點(diǎn),
所以
且
.又E是
中點(diǎn),
所以
,且
,
所以
且
.
所以,四邊形ECOD為平行四邊形.所以
.
又
平面
,
平面
,則
平面
.
(2)因?yàn)槿庵鱾?cè)面都是正方形,所以
,
.
所以
平面ABC.因?yàn)?/span>
平面ABC,所以
.
由已知得
,所以
,
所以
平面
.由(1)可知
,所以
平面
.
所以
.因?yàn)閭?cè)面是正方形,所以
.
又
,
平面
,
平面
,
所以
平面
.
(3)解:由條件求得
,
,可以求得![]()
所以![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)a∈R時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)對(duì)任意的x∈(1,+∞)均有f(x)<ax,若a∈Z,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左,右焦點(diǎn)分別為
,
,點(diǎn)
在橢圓
上.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為
的直線
與橢圓
相交于
,
兩點(diǎn),使得
?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是
,接下來(lái)的兩項(xiàng)是
,
,再接下來(lái)的三項(xiàng)是
,
,
,依此類推,若該數(shù)列前
項(xiàng)和
滿足:①
②
是2的整數(shù)次冪,則滿足條件的最小的
為
A. 21B. 91C. 95D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(1)證明:
,都有
;
(2)若函數(shù)
有且只有一個(gè)零點(diǎn),求
的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個(gè)容量為m的樣本,用分層抽樣的方法進(jìn)行抽樣調(diào)查,樣本中的中年人為6人,則n和m的值不可以是下列四個(gè)選項(xiàng)中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的一個(gè)頂點(diǎn)與拋物線
的焦點(diǎn)重合,
、
分別是橢圓
的左、右焦點(diǎn),其離心率
橢圓
右焦點(diǎn)
的直線
與橢圓
交于
、
兩點(diǎn).
(1)求橢圓
的方程;
(2)是否存在直線
,使得
?若存在,求出直線
的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)的各景點(diǎn)從2009年取消門(mén)票實(shí)行免費(fèi)開(kāi)放后,旅游的人數(shù)不斷地增加,不僅帶動(dòng)了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進(jìn)了該市旅游向“觀光、休閑、會(huì)展”三輪驅(qū)動(dòng)的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點(diǎn)的旅游人數(shù)
(萬(wàn)人)與年份
的數(shù)據(jù):
第 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人數(shù) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
![]()
該景點(diǎn)為了預(yù)測(cè)2021年的旅游人數(shù),建立了
與
的兩個(gè)回歸模型:
模型①:由最小二乘法公式求得
與
的線性回歸方程
;
模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線
的附近.
(1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程
.(
精確到個(gè)位,
精確到0.01).
(2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù)
,并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)2021年該景區(qū)的旅游人數(shù)(單位:萬(wàn)人,精確到個(gè)位).
回歸方程 | ① | ② |
| 30407 | 14607 |
參考公式、參考數(shù)據(jù)及說(shuō)明:
①對(duì)于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘法估計(jì)分別為
.②刻畫(huà)回歸效果的相關(guān)指數(shù)
;③參考數(shù)據(jù):
,
.
|
|
|
|
|
|
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com