知橢圓
的離心率為
,定點(diǎn)
,橢圓短軸的端點(diǎn)是
,且
.
(1)求橢圓
的方程;
(2)設(shè)過點(diǎn)
且斜率不為0的直線交橢圓
于
兩點(diǎn).試問
軸上是否存在異于
的定點(diǎn)
,使
平分
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
(1)
;(2)存在,
.
【解析】
試題分析:(1)由離心率為
可得到一個(gè)關(guān)于
的方程,再根據(jù)MB1⊥MB2即可得
;(2)本題采用“設(shè)而不求”的方法,將A,B兩點(diǎn)坐標(biāo)設(shè)出,但不求出.注意到
平分
,則直線
的傾斜角互補(bǔ)這個(gè)性質(zhì),從而由斜率著手,以韋達(dá)定理為輔助工具,得出點(diǎn)P的坐標(biāo).
試題解析:(1)由
得![]()
又
,知
是等腰直角三角形,從而
.
所以橢圓C的方程是
.
5分
(2)設(shè)
,直線AB的方程為![]()
由
得
,
所以
①,![]()
②
8分
若
平分
,則直線
的傾斜角互補(bǔ),
所以![]()
設(shè)
,則有
,
10分
將
代入上式,整理得
,
將①②代入得
,由于上式對任意實(shí)數(shù)都成立,所以
.
綜上,存在定點(diǎn)
,使平分PM平分∠APB.
13分
考點(diǎn):1.橢圓的簡單幾何性質(zhì);2.直線與圓錐曲線的位置關(guān)系;3.斜率公式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓
的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線
相切,
分別是橢圓的左右兩個(gè)頂點(diǎn),
為橢圓
上的動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若
與
均不重合,設(shè)直線
與
的斜率分別為
,證明:
為定值;
(Ⅲ)
為過
且垂直于
軸的直線上的點(diǎn),若
,求點(diǎn)
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知橢圓
的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線
相切,
分別是橢圓的左右兩個(gè)頂點(diǎn),
為橢圓
上的動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若
與
均不重合,設(shè)直線
與
的斜率分別為
,證明:
為定值;
(Ⅲ)
為過
且垂直于
軸的直線上的點(diǎn),若
,求點(diǎn)
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知橢圓
的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線
相切,
分別是橢圓的左右兩個(gè)頂點(diǎn),
為橢圓
上的動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若
與
均不重合,設(shè)直線
與
的斜率分別為
,證明:
為定值;
(Ⅲ)
為過
且垂直于
軸的直線上的點(diǎn),若
,求點(diǎn)
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高二第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓![]()
的離心率為
,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知?jiǎng)又本
與橢圓
相交于
、
兩點(diǎn).
①若線段
中點(diǎn)的橫坐標(biāo)為
,求斜率
的值;
②已知點(diǎn)
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省青島市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知橢圓![]()
的離心率為
,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知?jiǎng)又本
與橢圓
相交于
、
兩點(diǎn).
①若線段
中點(diǎn)的橫坐標(biāo)為
,求斜率
的值;
②已知點(diǎn)
,求證:
為定值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com