欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.已知函數(shù)f(x)=cos$\frac{πx}{6}$,集合M={1,2,3,4,5,6,7,8,9},現(xiàn)從M中任取兩個(gè)不同的元素m,n,則f(m)•f(n)=0的概率為( 。
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{7}{18}$D.$\frac{7}{9}$

分析 對(duì)于m值,求出函數(shù)的值,然后用排列組合求出滿足f(m)•f(n)=0的個(gè)數(shù),以及所有的個(gè)數(shù),即可得到f(m)•f(n)=0的概率

解答 解:已知函數(shù)f(x)=cos$\frac{πx}{6}$,集合M={1,2,3,4,5,6,7,8,9},
現(xiàn)從A中任取兩個(gè)不同的元素m,n,則f(m)•f(n)=0
m=3,9時(shí),f(m)=cos$\frac{πm}{6}$=0,滿足f(m)•f(n)=0的個(gè)數(shù)為m=3時(shí)8個(gè)
m=9時(shí)8個(gè),n=3時(shí)8個(gè),n=9時(shí)8個(gè),重復(fù)2個(gè),共有30個(gè).
從A中任取兩個(gè)不同的元素m,n,則f(m)•f(n)的值有72個(gè),
所以函數(shù)f(x)從集合M中任取兩個(gè)不同的元素m,n,則f(m)•f(n)=0的概率為$\frac{30}{72}$=$\frac{5}{12}$

點(diǎn)評(píng) 本題考查概率的應(yīng)用,排列組合的應(yīng)用,注意滿足題意,不重復(fù)不要漏,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,P為棱CD上的一點(diǎn),且三棱錐A-CPD1的體積為$\frac{2}{3}$.
(1)求CP的長(zhǎng);
(2)求直線AD與平面APD1所成的角θ的正弦值;
(3)請(qǐng)直接寫出正方體的棱上滿足C1M∥平面APD1的所有點(diǎn)M的位置,并任選其中的一點(diǎn)予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓W:$\frac{{x}^{2}}{2m+10}$+$\frac{{y}^{2}}{{m}^{2}-2}$=1的左焦點(diǎn)為F(m,0),過點(diǎn)M(-3,0)作一條斜率大于0的直線l與W交于不同的兩點(diǎn)A、B,延長(zhǎng)BF交W于點(diǎn)C.
(1)求橢圓W的離心率;
(2)若△AMF與△CMF的面積分別為S1和S2,且S1=λS2,求λ的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在一個(gè)盒子中裝有標(biāo)號(hào)為1、3、5、7、9的五個(gè)球,現(xiàn)從中一次性取出兩個(gè)球,每個(gè)小球被取出的可能性相等.
(Ⅰ)寫出從中一次性取出兩個(gè)小球全部可能的所有結(jié)果;
(Ⅱ求取出兩個(gè)球上標(biāo)號(hào)之和能被4整除的概率;
(Ⅲ)將取出兩個(gè)球按較小標(biāo)號(hào)為橫坐標(biāo),較大標(biāo)號(hào)為縱坐標(biāo),確定點(diǎn),求這些點(diǎn)落在直線y=x+2上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上有一點(diǎn)P,橢圓內(nèi)一點(diǎn)Q在PF2的延長(zhǎng)線上,滿足QF1⊥QP,若sin∠F1PQ=$\frac{5}{13}$,則該橢圓離心率取值范圍是( 。
A.($\frac{1}{5}$,1)B.($\frac{\sqrt{26}}{26}$,1)C.($\frac{1}{5},\frac{\sqrt{2}}{2}$)D.($\frac{\sqrt{26}}{26},\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點(diǎn)E,AB=2AC.
(Ⅰ)求證:BE=2AD;
(Ⅱ)當(dāng)AC=1,EC=2時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義:最高次項(xiàng)的系數(shù)為1的多項(xiàng)式P(x)=xn+an-1xn-1+…+a1x+a0(n∈N*)的其余系數(shù)ai(i=0,1,…,n-1)均是整數(shù),則方程P(x)=0的根叫代數(shù)整數(shù).下列各數(shù)不是代數(shù)整數(shù)的是( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}$C.$\frac{1+\sqrt{5}}{2}$D.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知兩動(dòng)圓${F_1}:{(x+\sqrt{3})^2}+{y^2}={r^2}$和${F_2}:{(x-\sqrt{3})^2}+{y^2}={(4-r)^2}$(0<r<4),把它們的公共點(diǎn)的軌跡記為曲線C,若曲線C與y軸的正半軸的交點(diǎn)為M,且曲線C上的相異兩點(diǎn)A、B滿足:$\overrightarrow{MA}•\overrightarrow{MB}$=0.
(1)求曲線C的方程;
(2)若A的坐標(biāo)為(-2,0),求直線AB和y軸的交點(diǎn)N的坐標(biāo);
(3)證明直線AB恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)等比數(shù)列{an}中,前n項(xiàng)和為Sn,已知S3=8,S6=7,則a7+a8+a9=(  )
A.8B.6C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案