欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點,橢圓C過點(-
3
,1)
且與拋物線y2=-8x有一個公共的焦點.
(1)求橢圓C方程;
(2)直線l過橢圓C的右焦點F2且斜率為1與橢圓C交于A,B兩點,求弦AB的長;
(3)以第(2)題中的AB為邊作一個等邊三角形ABP,求點P的坐標.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)由題意得c=2,
3
a2
+
1
a2-4
=1
,由此能求出橢圓方程.
(2)直線l的方程為y=x-2,聯(lián)立方程組
y=x-2
x2
6
+
y2
2
=1
,得2x2-6x+3=0,由此利用韋達定理能求出|AB|.
(3)設(shè)AB的中點為M(x0,y0),由題意得x0=
3
2
,y0=-
1
2
,線段AB的中垂線l1:y=-x+1,由此能求出點P的坐標.
解答: 解:(1)由題意得 F1(-2,0),c=2…(2分)
3
a2
+
1
a2-4
=1
,
得a4-8a2+12=0,解得a2=6或a2=2(舍去),…(2分)
則b2=2,…(1分)
故橢圓方程為
x2
6
+
y2
2
=1
.…(1分)
(2)直線l的方程為y=x-2.…(1分)
聯(lián)立方程組
y=x-2
x2
6
+
y2
2
=1
,消去y并整理得2x2-6x+3=0.…(3分)
設(shè)A(x1,y1),B(x2,y2).
故x1+x2=3,x1x2=
3
2
.…(1分)
則|AB|=
1+k2
|x1-x2|=
(1+k2)[(x1+x2)2-4x1x2]
=
6
.…(2分)
(3)設(shè)AB的中點為M(x0,y0).
∵x1+x2=3=2x0,∴x0=
3
2
,…(1分)
∵y0=x0-2,∴y0=-
1
2
.…(1分)
線段AB的中垂線l1斜率為-1,所以l1:y=-x+1
設(shè)P(t,1-t)…(1分)
所以|MP|=
(t-
3
2
)
2
+(
3
2
-t)
2
=
2
|t-
3
2
|
.…(1分)
當△ABP為正三角形時,|MP|=
3
2
|AB|,
2
|t-
3
2
|=
3
2
6
,解得t=0或3.…(2分)
即P(0,1),或P(3,-2).…(1分)
點評:本題考查橢圓C方程的求法,考查弦AB的長的求法,考查點P的坐標的求法,解題時要認真審題,注意函數(shù)與方程思想的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知q是等比數(shù)列{an}的公比,則“q<1”是“數(shù)列{an}是遞減數(shù)列”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4
1+i
等于( 。
A、iB、1+i
C、1-iD、2-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={x|lgx≤0},B={x|2x≤1},全集U=R,則∁U(A∪B)=(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,1]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
x
+lnx.
(1)若g(x)=f(x)-mx在[1,+∞)上為單調(diào)函數(shù),求實數(shù)m的取值范圍;
(2)若在[1,e]上至少存在一個x0,使得kx0-f(x0)>
2e
x0
成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知半球內(nèi)有一個內(nèi)接正方體,求這個半球的體積與正方體的體積之比.[提示:過正方體的對角面作截面].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}滿足:①a1=1;②所有項an∈N*;③1=a1<a2<…<an<an+1<…設(shè)集合Am={n|an≤m,m∈N*},將集合Am中的元素的最大值記為bm.換句話說,bm是數(shù)列{an}中滿足不等式an≤m的所有項的項數(shù)的最大值.我們稱數(shù)列{bn}為數(shù)列{an}的伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)請寫出數(shù)列1,4,7的伴隨數(shù)列;
(2)設(shè)an=3n-1,求數(shù)列{an}的伴隨數(shù)列{bn}的前20之和;
(3)若數(shù)列{an}的前n項和Sn=n2+c(其中c常數(shù)),求數(shù)列{an}的伴隨數(shù)列{bm}的前m項和Tm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
log4x-1
2x-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x-1
+(x-2)0的定義域為( 。
A、{x|x≠2}
B、[1,2)∪(2,+∞)
C、{x|x>1}
D、[1,+∞)

查看答案和解析>>

同步練習冊答案