【題目】已知橢圓
的離心率為
,且以原點(diǎn)為圓心,以短軸長為直徑的圓
過點(diǎn)
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)![]()
的直線
與橢圓
交于不同的兩點(diǎn)
,且與圓
沒有公共點(diǎn),設(shè)
為橢圓
上一點(diǎn),滿足
(
為坐標(biāo)原點(diǎn)),求實(shí)數(shù)
的取值范圍.
【答案】(1)
(2)![]()
【解析】
(1)利用直線與圓相切的充要條件列出方程求出
的值,利用橢圓的離心率公式得到
,
的關(guān)系,再利用橢圓本身三個參數(shù)的關(guān)系求出
,
的值,將
,
的值代入橢圓的方程即可;
(2)設(shè)
的方程代入橢圓方程,利用
確定
,
,
三點(diǎn)之間的關(guān)系,利用點(diǎn)
在橢圓上,建立方程,從而可求實(shí)數(shù)
取值范圍.
(1)
以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線
相切
根據(jù)點(diǎn)到直線距離公式可得:![]()
![]()
橢圓
的離心率為![]()
![]()
![]()
![]()
橢圓C的方程為:![]()
(2)由題意直線
斜率不為
,
設(shè)直線
:![]()
得![]()
由
得
![]()
,
設(shè)
,
由韋達(dá)定理![]()
![]()
![]()
![]()
![]()
點(diǎn)
在橢圓上
![]()
得![]()
①
直線與圓沒有公共點(diǎn),則
,
![]()
.
②
由①②可得:![]()
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在1,2,3,4,5,6這六個數(shù)字所組成的允許有重復(fù)數(shù)字的三位數(shù)中,各個數(shù)位上的數(shù)字之和為9的三位數(shù)共有( )
A.16個B.18個C.24個D.25個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以
,
,
,
,
,
為頂點(diǎn)的五面體中,平面
平面
,
,四邊形
為平行四邊形,且
.
![]()
(1)求證:
;
(2)若
,
,直線
與平面
所成角為60°,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知衡量病毒傳播能力的最重要指標(biāo)叫做傳播指數(shù)RO.它指的是,在自然情況下(沒有外力介入,同時(shí)所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數(shù).它的簡單計(jì)算公式是:
確認(rèn)病例增長率
系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時(shí)間(單位:天).根據(jù)統(tǒng)計(jì),確認(rèn)病例的平均增長率為
,兩例連續(xù)病例的間隔時(shí)間的平均數(shù)為
天,根據(jù)以上RO數(shù)據(jù)計(jì)算,若甲得這種傳染病,則
輪傳播后由甲引起的得病的總?cè)藬?shù)約為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知曲線
的參數(shù)方程:
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程;
(2)過曲線
上一點(diǎn)
作直線
與曲線
交于
兩點(diǎn),中點(diǎn)為
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué),科赫曲線是比較典型的分形圖形,1904年瑞典數(shù)學(xué)家科赫第一次描述了這種曲線,因此將這種曲線稱為科赫曲線.其生成方法是:(I)將正三角形(圖(1))的每邊三等分,以每邊三等分后的中間的那一條線段為一邊,向形外作等邊三角形,并將這“中間一段”去掉,得到圖(2);(II)將圖(2)的每邊三等分,重復(fù)上述的作圖方法,得到圖(3);(Ⅲ)再按上述方法繼續(xù)做下去……,設(shè)圖(1)中的等邊三角形的邊長為1,并且分別將圖(1)、圖(2)、圖(3)、…、圖(n)、…中的圖形依次記作
,
,
,…,
,…,設(shè)
的周長為
,則
為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是等腰梯形,
,
,
是等邊三角形,點(diǎn)
在
上,且
.
![]()
(1)證明:
//平面
.
(2)若平面
平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是直角梯形,且
是正三角形,
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com