已知曲線
,![]()
(1)化
的方程為普通方程,并說明它們分別表示什么曲線?
(2)若
上的點(diǎn)P對(duì)應(yīng)的參數(shù)為
,Q為
上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線
的距離的最小值
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形
中,
分別為四邊的中點(diǎn),且都在坐標(biāo)軸上,設(shè)
,
.![]()
(Ⅰ)求直線
與
的交點(diǎn)
的軌跡
的方程;
(Ⅱ)過圓![]()
上一點(diǎn)
作圓的切線與軌跡
交于
兩點(diǎn),若
,試求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,己知直線l與拋物線
相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B(2,0).![]()
(1)若動(dòng)點(diǎn)M滿足
,求點(diǎn)M軌跡C的方程:
(2)若過點(diǎn)B的直線
(斜率不為零)與(1)中的軌跡C交于不同的兩點(diǎn)E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
(
)經(jīng)過
與
兩點(diǎn).![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿足
.求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
是離心率為
的橢圓
:
上的一點(diǎn),斜率為
的直線
交橢圓
于
、
兩點(diǎn),且
、
、
三點(diǎn)不重合.
(1)求橢圓
的方程;
(2)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,離心率為
,且過雙曲線
的頂點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)
、
是雙曲線
上關(guān)于它的中心對(duì)稱的任意兩點(diǎn),
為該雙曲線上的動(dòng)點(diǎn),若直線
、
均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個(gè)關(guān)于橢圓
的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程
(
,
不同時(shí)為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知F1、F2分別為橢圓C1:
的上、下焦點(diǎn),其中F1也是拋物線C2:
的焦點(diǎn),點(diǎn)A是曲線C1,C2在第二象限的交點(diǎn),且![]()
![]()
(Ⅰ)求橢圓
1的方程;
(Ⅱ)已知P是橢圓C1上的動(dòng)點(diǎn),MN是圓C:
的直徑,求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).若以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為
.
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 求直線
被曲線
所截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
(
)上一點(diǎn)
到其準(zhǔn)線的距離為
.![]()
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)拋物線
上動(dòng)點(diǎn)
的橫坐標(biāo)為
(
),過點(diǎn)
的直線交
于另一點(diǎn)
,交
軸于
點(diǎn)(直線
的斜率記作
).過點(diǎn)
作
的垂線交
于另一點(diǎn)
.若
恰好是
的切線,問
是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com