【題目】有下列四個(gè)命題:
①“若
,則x,y互為倒數(shù)”的逆命題;
②“面積相等的三角形全等”的否命題;
③“若
,則
有實(shí)根”的逆否命題;
④“若
,則
”的逆命題。
其中真命題是( )
A.①②④B.②③④C.①②③D.①③④
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代城市大多是棋盤(pán)式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義
,
兩點(diǎn)間的“直角距離”為:
.
![]()
(1)在平面直角坐標(biāo)系中,寫(xiě)出所有滿足到原點(diǎn)的“直角距離”為2的“格點(diǎn)”的坐標(biāo).(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)求到兩定點(diǎn)
、
的“直角距離”和為定值
的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.(在以下三個(gè)條件中任選一個(gè)做答)
①
,
,
;
②
,
,
;
③
,
,
.
(3)寫(xiě)出同時(shí)滿足以下兩個(gè)條件的“格點(diǎn)”的坐標(biāo),并說(shuō)明理由(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).
①到
,
兩點(diǎn)“直角距離”相等;
②到
,
兩點(diǎn)“直角距離”和最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量
(單位:
)和與它“相近”的株數(shù)
具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過(guò)
),并分別記錄了相近株數(shù)為0,1,2,3,4時(shí)每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
| 0 | 1 | 2 | 3 | 4 |
| 15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量
關(guān)于它“相近”株數(shù)
的回歸方程;
(2)有一種植戶準(zhǔn)備種植該種水果500株,且每株與它“相近”的株數(shù)都為
,計(jì)劃收獲后能全部售出,價(jià)格為10元
,如果收入(收入=產(chǎn)量×價(jià)格)不低于25000元,則
的最大值是多少?
(3)該種植基地在如圖所示的直角梯形地塊的每個(gè)交叉點(diǎn)(直線的交點(diǎn))處都種了一株該種水果,其中每個(gè)小正方形的邊長(zhǎng)和直角三角形的直角邊長(zhǎng)都為
,已知該梯形地塊周邊無(wú)其他樹(shù)木影響,若從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測(cè)它的產(chǎn)量的分布列與數(shù)學(xué)期望.
附:回歸方程
中斜率和截距的最小二乘法估計(jì)公式分別為:
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選題)設(shè)正實(shí)數(shù)
滿足
,則()
A.
有最小值4B.
有最小值![]()
C.
有最大值
D.
有最小值![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在正整數(shù)n的各位數(shù)字中,共含有
個(gè)1,
個(gè)2,,
個(gè)n.證明:
并確定使等號(hào)成立的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓
:
與圓
:
相切,并且橢圓
上動(dòng)點(diǎn)與圓
上動(dòng)點(diǎn)間距離最大值為
.
![]()
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作兩條互相垂直的直線
,
,
與
交于
兩點(diǎn),
與圓
的另一交點(diǎn)為
,求
面積的最大值,并求取得最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】市面上有某品牌
型和
型兩種節(jié)能燈,假定
型節(jié)能燈使用壽命都超過(guò)5000小時(shí),經(jīng)銷(xiāo)商對(duì)
型節(jié)能燈使用壽命進(jìn)行了調(diào)查統(tǒng)計(jì),得到如下頻率分布直方圖:
![]()
某商家因原店面需要重新裝修,需租賃一家新店面進(jìn)行周轉(zhuǎn),合約期一年.新店面需安裝該品牌節(jié)能燈5支(同種型號(hào))即可正常營(yíng)業(yè).經(jīng)了解,
型20瓦和
型55瓦的兩種節(jié)能燈照明效果相當(dāng),都適合安裝.已知
型和
型節(jié)能燈每支的價(jià)格分別為120元、25元,當(dāng)?shù)厣虡I(yè)電價(jià)為0.75元/千瓦時(shí).假定該店面一年周轉(zhuǎn)期的照明時(shí)間為3600小時(shí),若正常營(yíng)業(yè)期間燈壞了立即購(gòu)買(mǎi)同型燈管更換.(用頻率估計(jì)概率)
(Ⅰ)根據(jù)頻率直方圖估算
型節(jié)能燈的平均使用壽命;
(Ⅱ)根據(jù)統(tǒng)計(jì)知識(shí)知,若一支燈管一年內(nèi)需要更換的概率為
,那么
支燈管估計(jì)需要更換
支.若該商家新店面全部安裝了
型節(jié)能燈,試估計(jì)一年內(nèi)需更換的支數(shù);
(Ⅲ)若只考慮燈的成本和消耗電費(fèi),你認(rèn)為該商家應(yīng)選擇哪種型號(hào)的節(jié)能燈,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)
滿足
,且
為偶函數(shù),若
在
內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1的方程為
,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+
與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,且
,求k的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com